BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 16681038)

  • 1. Mechanism of intestinal transport of an organic cation, tributylmethylammonium in Caco-2 cell monolayers.
    Hong SS; Moon SC; Shim CK
    Arch Pharm Res; 2006 Apr; 29(4):318-22. PubMed ID: 16681038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dose dependency in the oral bioavailability of an organic cation model, tributylmethyl ammonium (TBuMA), in rats: association with the saturation of efflux by the P-gp system on the apical membrane of the intestinal epithelium.
    Kim MK; Han L; Choi MK; Han YH; Kim DD; Chung SJ; Shim CK
    J Pharm Sci; 2005 Dec; 94(12):2644-55. PubMed ID: 16258993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of MPP+ secretion across human intestinal Caco-2 cell monolayers: role of P-glycoprotein and a novel Na(+)-dependent organic cation transport mechanism.
    Bleasby K; Chauhan S; Brown CD
    Br J Pharmacol; 2000 Feb; 129(3):619-25. PubMed ID: 10711363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ion-pair formation with bile salts on the in vitro cellular transport of berberine.
    Chae HW; Kim IW; Jin HE; Kim DD; Chung SJ; Shim CK
    Arch Pharm Res; 2008 Jan; 31(1):103-10. PubMed ID: 18277615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular Uptake and Transport Characteristics of FL118 Derivatives in Caco-2 Cell Monolayers.
    Zhou Y; Hu W; Zhang X; Wang Y; Zhuang W; Li F; Li Q
    Chem Pharm Bull (Tokyo); 2021; 69(11):1054-1060. PubMed ID: 34719586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of ion pair complexation with bile salts to biliary excretion of organic cations in rats.
    Song IS; Chung SJ; Shim CK
    Am J Physiol Gastrointest Liver Physiol; 2001 Aug; 281(2):G515-25. PubMed ID: 11447032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active transepithelial transport of irinotecan (CPT-11) and its metabolites by human intestinal Caco-2 cells.
    Yamamoto W; Verweij J; de Bruijn P; de Jonge MJ; Takano H; Nishiyama M; Kurihara M; Sparreboom A
    Anticancer Drugs; 2001 Jun; 12(5):419-32. PubMed ID: 11395570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different activity of ATP dependent transport across the canalicular membrane for tributylmethylammonium and triethylmethylammonium as a potential mechanism of the preferential biliary excretion for tributylmethylammonium in the rat.
    Song IS; Chung SJ; Shim CK
    Pharm Res; 1999 Apr; 16(4):540-4. PubMed ID: 10227709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms for the uptake of cationic drugs by the liver: a study with tributylmethylammonium (TBuMA).
    Steen H; Oosting R; Meijer DK
    J Pharmacol Exp Ther; 1991 Aug; 258(2):537-43. PubMed ID: 1865356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms for the hepatic uptake and biliary excretion of tributylmethylammonium: studies with rat liver plasma membrane vesicles.
    Moseley RH; Smit H; Van Solkema BG; Wang W; Meijer DK
    J Pharmacol Exp Ther; 1996 Feb; 276(2):561-7. PubMed ID: 8632322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered pharmacokinetics and hepatic uptake of TBuMA in ethynylestradiol-induced cholestasis.
    Hong SS; Choi JM; Jin HE; Shim CK
    Arch Pharm Res; 2006 Apr; 29(4):323-7. PubMed ID: 16681039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of P-glycoprotein-mediated secretion in absorptive drug permeability: An approach using passive membrane permeability and affinity to P-glycoprotein.
    Döppenschmitt S; Spahn-Langguth H; Regårdh CG; Langguth P
    J Pharm Sci; 1999 Oct; 88(10):1067-72. PubMed ID: 10514357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport.
    Hilgendorf C; Spahn-Langguth H; Regårdh CG; Lipka E; Amidon GL; Langguth P
    J Pharm Sci; 2000 Jan; 89(1):63-75. PubMed ID: 10664539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport and epithelial secretion of the cardiac glycoside, digoxin, by human intestinal epithelial (Caco-2) cells.
    Cavet ME; West M; Simmons NL
    Br J Pharmacol; 1996 Jul; 118(6):1389-96. PubMed ID: 8832062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and the proton-monocarboxylic acid co-transporter.
    Wu X; Whitfield LR; Stewart BH
    Pharm Res; 2000 Feb; 17(2):209-15. PubMed ID: 10751037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of celiprolol across human intestinal epithelial (Caco-2) cells: mediation of secretion by multiple transporters including P-glycoprotein.
    Karlsson J; Kuo SM; Ziemniak J; Artursson P
    Br J Pharmacol; 1993 Nov; 110(3):1009-16. PubMed ID: 7905337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of ion-pair complexation with bile salts to the transport of organic cations across LLC-PK1 cell monolayers.
    Song IS; Han YH; Chung SJ; Shim CK
    Pharm Res; 2003 Apr; 20(4):597-604. PubMed ID: 12739767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saturable absorptive transport of the hydrophilic organic cation ranitidine in Caco-2 cells: role of pH-dependent organic cation uptake system and P-glycoprotein.
    Bourdet DL; Thakker DR
    Pharm Res; 2006 Jun; 23(6):1165-77. PubMed ID: 16741655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereoselective transport and uptake of propranolol across human intestinal Caco-2 cell monolayers.
    Wang Y; Cao J; Wang X; Zeng S
    Chirality; 2010 Mar; 22(3):361-8. PubMed ID: 19575464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hepatobiliary and intestinal clearance of amphiphilic cationic drugs in mice in which both mdr1a and mdr1b genes have been disrupted.
    Smit JW; Schinkel AH; Weert B; Meijer DK
    Br J Pharmacol; 1998 May; 124(2):416-24. PubMed ID: 9641561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.