These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 16681217)
1. Cost-benefit analysis in the selection of efficient multipollutant strategies. Chestnut LG; Mills DM; Cohan DS J Air Waste Manag Assoc; 2006 Apr; 56(4):530-6. PubMed ID: 16681217 [TBL] [Abstract][Full Text] [Related]
2. Optimization of multipollutant air quality management strategies: A case study for five cities in the United States. Liao KJ; Hou X J Air Waste Manag Assoc; 2015 Jun; 65(6):732-42. PubMed ID: 25976486 [TBL] [Abstract][Full Text] [Related]
3. An integrated framework for multipollutant air quality management and its application in Georgia. Cohan DS; Boylan JW; Marmur A; Khan MN Environ Manage; 2007 Oct; 40(4):545-54. PubMed ID: 17638048 [TBL] [Abstract][Full Text] [Related]
4. Development of risk-based air quality management strategies under impacts of climate change. Liao KJ; Amar P; Tagaris E; Russell AG J Air Waste Manag Assoc; 2012 May; 62(5):557-65. PubMed ID: 22696805 [TBL] [Abstract][Full Text] [Related]
5. Emission projections for the U.S. Environmental Protection Agency Section 812 second prospective Clean Air Act cost/benefit analysis. Wilson JH; Mullen MA; Bollman AD; Thesing KB; Salhotra M; Divita F; Neumann JE; Price JC; DeMocker J J Air Waste Manag Assoc; 2008 May; 58(5):657-72. PubMed ID: 18512443 [TBL] [Abstract][Full Text] [Related]
6. Causal Inference Methods for Estimating Long-Term Health Effects of Air Quality Regulations. Zigler CM; Kim C; Choirat C; Hansen JB; Wang Y; Hund L; Samet J; King G; Dominici F; Res Rep Health Eff Inst; 2016 May; (187):5-49. PubMed ID: 27526497 [TBL] [Abstract][Full Text] [Related]
7. Health co-benefits from air pollution and mitigation costs of the Paris Agreement: a modelling study. Markandya A; Sampedro J; Smith SJ; Van Dingenen R; Pizarro-Irizar C; Arto I; González-Eguino M Lancet Planet Health; 2018 Mar; 2(3):e126-e133. PubMed ID: 29615227 [TBL] [Abstract][Full Text] [Related]
8. A cost-efficiency and health benefit approach to improve urban air quality. Miranda AI; Ferreira J; Silveira C; Relvas H; Duque L; Roebeling P; Lopes M; Costa S; Monteiro A; Gama C; Sá E; Borrego C; Teixeira JP Sci Total Environ; 2016 Nov; 569-570():342-351. PubMed ID: 27348699 [TBL] [Abstract][Full Text] [Related]
9. Resource allocation for mitigating regional air pollution-related mortality: A summertime case study for five cities in the United States. Liao KJ; Hou X; Strickland MJ J Air Waste Manag Assoc; 2016 Aug; 66(8):748-57. PubMed ID: 27441782 [TBL] [Abstract][Full Text] [Related]
11. What Are the Net Benefits of Reducing the Ozone Standard to 65 ppb? An Alternative Analysis. Lange SS; Mulholland SE; Honeycutt ME Int J Environ Res Public Health; 2018 Jul; 15(8):. PubMed ID: 30049975 [TBL] [Abstract][Full Text] [Related]
12. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents. Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238 [TBL] [Abstract][Full Text] [Related]
13. Cost-effective control of SO2 emissions in Asia. Cofala J; Amann M; Gyarfas F; Schoepp W; Boudri JC; Hordijk L; Kroeze C; Junfeng L; Lin D; Panwar TS; Gupta S J Environ Manage; 2004 Sep; 72(3):149-61. PubMed ID: 15251221 [TBL] [Abstract][Full Text] [Related]
14. Practical advancement of multipollutant scientific and risk assessment approaches for ambient air pollution. Johns DO; Stanek LW; Walker K; Benromdhane S; Hubbell B; Ross M; Devlin RB; Costa DL; Greenbaum DS Environ Health Perspect; 2012 Sep; 120(9):1238-42. PubMed ID: 22645280 [TBL] [Abstract][Full Text] [Related]
16. Exploring trade-offs between air pollutants through an Integrated Assessment Model. Carnevale C; Finzi G; Pederzoli A; Turrini E; Volta M; Guariso G; Gianfreda R; Maffeis G; Pisoni E; Thunis P; Markl-Hummel L; Blond N; Clappier A; Dujardin V; Weber C; Perron G Sci Total Environ; 2014 May; 481():7-16. PubMed ID: 24572927 [TBL] [Abstract][Full Text] [Related]
17. Co-control of urban air pollutants and greenhouse gases in Mexico City. West JJ; Osnaya P; Laguna I; Martínez J; Fernández A Environ Sci Technol; 2004 Jul; 38(13):3474-81. PubMed ID: 15296295 [TBL] [Abstract][Full Text] [Related]
18. Air quality co-benefits of subnational carbon policies. Thompson TM; Rausch S; Saari RK; Selin NE J Air Waste Manag Assoc; 2016 Oct; 66(10):988-1002. PubMed ID: 27216236 [TBL] [Abstract][Full Text] [Related]
19. Co-control of local air pollutants and CO2 in the Chinese iron and steel industry. Mao X; Zeng A; Hu T; Zhou J; Xing Y; Liu S Environ Sci Technol; 2013; 47(21):12002-10. PubMed ID: 24083613 [TBL] [Abstract][Full Text] [Related]
20. Is the air pollution health research community prepared to support a multipollutant air quality management framework? Mauderly JL; Burnett RT; Castillejos M; Ozkaynak H; Samet JM; Stieb DM; Vedal S; Wyzga RE Inhal Toxicol; 2010 Jun; 22 Suppl 1():1-19. PubMed ID: 20462389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]