These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 16681366)
21. Insights into DNA replication: the crystal structure of DNA polymerase B1 from the archaeon Sulfolobus solfataricus. Savino C; Federici L; Johnson KA; Vallone B; Nastopoulos V; Rossi M; Pisani FM; Tsernoglou D Structure; 2004 Nov; 12(11):2001-8. PubMed ID: 15530364 [TBL] [Abstract][Full Text] [Related]
22. A method to accurately quantitate intensities of (32)P-DNA bands when multiple bands appear in a single lane of a gel is used to study dNTP insertion opposite a benzo[a]pyrene-dG adduct by Sulfolobus DNA polymerases Dpo4 and Dbh. Sholder G; Loechler EL DNA Repair (Amst); 2015 Jan; 25():97-103. PubMed ID: 25497330 [TBL] [Abstract][Full Text] [Related]
23. The Y-family DNA polymerase Dpo4 uses a template slippage mechanism to create single-base deletions. Wu Y; Wilson RC; Pata JD J Bacteriol; 2011 May; 193(10):2630-6. PubMed ID: 21421759 [TBL] [Abstract][Full Text] [Related]
25. The efficiency and specificity of apurinic/apyrimidinic site bypass by human DNA polymerase eta and Sulfolobus solfataricus Dpo4. Kokoska RJ; McCulloch SD; Kunkel TA J Biol Chem; 2003 Dec; 278(50):50537-45. PubMed ID: 14523013 [TBL] [Abstract][Full Text] [Related]
26. Response of Sulfolobus solfataricus Dpo4 polymerase in vitro to a DNA G-quadruplex. Berroyer A; Alvarado G; Larson ED Mutagenesis; 2019 Sep; 34(3):289-297. PubMed ID: 31169295 [TBL] [Abstract][Full Text] [Related]
27. Molecular modeling and functional characterization of the monomeric primase-polymerase domain from the Sulfolobus solfataricus plasmid pIT3. Prato S; Vitale RM; Contursi P; Lipps G; Saviano M; Rossi M; Bartolucci S FEBS J; 2008 Sep; 275(17):4389-402. PubMed ID: 18671730 [TBL] [Abstract][Full Text] [Related]
28. Roles of the four DNA polymerases of the crenarchaeon Sulfolobus solfataricus and accessory proteins in DNA replication. Choi JY; Eoff RL; Pence MG; Wang J; Martin MV; Kim EJ; Folkmann LM; Guengerich FP J Biol Chem; 2011 Sep; 286(36):31180-93. PubMed ID: 21784862 [TBL] [Abstract][Full Text] [Related]
29. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Ling H; Boudsocq F; Woodgate R; Yang W Cell; 2001 Oct; 107(1):91-102. PubMed ID: 11595188 [TBL] [Abstract][Full Text] [Related]
30. Stepwise translocation of Dpo4 polymerase during error-free bypass of an oxoG lesion. Rechkoblit O; Malinina L; Cheng Y; Kuryavyi V; Broyde S; Geacintov NE; Patel DJ PLoS Biol; 2006 Jan; 4(1):e11. PubMed ID: 16379496 [TBL] [Abstract][Full Text] [Related]
31. Structure-function relationships in miscoding by Sulfolobus solfataricus DNA polymerase Dpo4: guanine N2,N2-dimethyl substitution produces inactive and miscoding polymerase complexes. Zhang H; Eoff RL; Kozekov ID; Rizzo CJ; Egli M; Guengerich FP J Biol Chem; 2009 Jun; 284(26):17687-99. PubMed ID: 19542237 [TBL] [Abstract][Full Text] [Related]
32. Nucleotide selection by the Y-family DNA polymerase Dpo4 involves template translocation and misalignment. Brenlla A; Markiewicz RP; Rueda D; Romano LJ Nucleic Acids Res; 2014 Feb; 42(4):2555-63. PubMed ID: 24270793 [TBL] [Abstract][Full Text] [Related]
33. [Analogs of pyrophosphate in a pyrophosphorolysis reaction catalyzed by DNA polymerases]. Rozovskaia TA; Tarusova NB; Minasian ShKh; Atrazhev AM; Kukhanova MK Mol Biol (Mosk); 1989; 23(3):862-71. PubMed ID: 2549402 [TBL] [Abstract][Full Text] [Related]
34. DNA adduct bypass polymerization by Sulfolobus solfataricus DNA polymerase Dpo4: analysis and crystal structures of multiple base pair substitution and frameshift products with the adduct 1,N2-ethenoguanine. Zang H; Goodenough AK; Choi JY; Irimia A; Loukachevitch LV; Kozekov ID; Angel KC; Rizzo CJ; Egli M; Guengerich FP J Biol Chem; 2005 Aug; 280(33):29750-64. PubMed ID: 15965231 [TBL] [Abstract][Full Text] [Related]
35. Effects of N(2)-alkylguanine, O(6)-alkylguanine, and abasic lesions on DNA binding and bypass synthesis by the euryarchaeal B-family DNA polymerase vent (exo(-)). Lim S; Song I; Guengerich FP; Choi JY Chem Res Toxicol; 2012 Aug; 25(8):1699-707. PubMed ID: 22793782 [TBL] [Abstract][Full Text] [Related]
36. Structural insight into dynamic bypass of the major cisplatin-DNA adduct by Y-family polymerase Dpo4. Wong JH; Brown JA; Suo Z; Blum P; Nohmi T; Ling H EMBO J; 2010 Jun; 29(12):2059-69. PubMed ID: 20512114 [TBL] [Abstract][Full Text] [Related]
37. Differential furanose selection in the active sites of archaeal DNA polymerases probed by fixed-conformation nucleotide analogues. Ketkar A; Zafar MK; Banerjee S; Marquez VE; Egli M; Eoff RL Biochemistry; 2012 Nov; 51(45):9234-44. PubMed ID: 23050956 [TBL] [Abstract][Full Text] [Related]
38. Hydrogen bonding of 7,8-dihydro-8-oxodeoxyguanosine with a charged residue in the little finger domain determines miscoding events in Sulfolobus solfataricus DNA polymerase Dpo4. Eoff RL; Irimia A; Angel KC; Egli M; Guengerich FP J Biol Chem; 2007 Jul; 282(27):19831-43. PubMed ID: 17468100 [TBL] [Abstract][Full Text] [Related]
39. Subtle but variable conformational rearrangements in the replication cycle of Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) may accommodate lesion bypass. Wang Y; Arora K; Schlick T Protein Sci; 2006 Jan; 15(1):135-51. PubMed ID: 16322565 [TBL] [Abstract][Full Text] [Related]
40. Cleavage of double-stranded DNA by the intrinsic 3'-5' exonuclease activity of DNA polymerase B1 from the hyperthermophilic archaeon Sulfolobus solfataricus at high temperature. Lou H; Duan Z; Sun T; Huang L FEMS Microbiol Lett; 2004 Feb; 231(1):111-7. PubMed ID: 14769474 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]