BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 16682009)

  • 1. 3D modeling of the activated states of constitutively active mutants of rhodopsin.
    Nikiforovich GV; Marshall GR
    Biochem Biophys Res Commun; 2006 Jun; 345(1):430-7. PubMed ID: 16682009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional model for meta-II rhodopsin, an activated G-protein-coupled receptor.
    Nikiforovich GV; Marshall GR
    Biochemistry; 2003 Aug; 42(30):9110-20. PubMed ID: 12885244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational modeling of constitutively active mutants of GPCRs C5a receptor.
    Nikiforovich GV; Baranski TJ
    Methods Enzymol; 2010; 485():369-91. PubMed ID: 21050928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of stability predictions and simulated unfolding of rhodopsin structures.
    Tastan O; Yu E; Ganapathiraju M; Aref A; Rader AJ; Klein-Seetharaman J
    Photochem Photobiol; 2007; 83(2):351-62. PubMed ID: 17576347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio computational modeling of loops in G-protein-coupled receptors: lessons from the crystal structure of rhodopsin.
    Mehler EL; Hassan SA; Kortagere S; Weinstein H
    Proteins; 2006 Aug; 64(3):673-90. PubMed ID: 16729264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural origins of constitutive activation in rhodopsin: Role of the K296/E113 salt bridge.
    Kim JM; Altenbach C; Kono M; Oprian DD; Hubbell WL; Khorana HG
    Proc Natl Acad Sci U S A; 2004 Aug; 101(34):12508-13. PubMed ID: 15306683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shift in Conformational Equilibrium Induces Constitutive Activity of G-Protein-Coupled Receptor, Rhodopsin.
    Maeda R; Hiroshima M; Yamashita T; Wada A; Sako Y; Shichida Y; Imamoto Y
    J Phys Chem B; 2018 May; 122(18):4838-4843. PubMed ID: 29668280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predisposition of the dark state of rhodopsin to functional changes in structure.
    Isin B; Rader AJ; Dhiman HK; Klein-Seetharaman J; Bahar I
    Proteins; 2006 Dec; 65(4):970-83. PubMed ID: 17009319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel approach to computer modeling of seven-helical transmembrane proteins: current progress in the test case of bacteriorhodopsin.
    Nikiforovich GV; Galaktionov S; Balodis J; Marshall GR
    Acta Biochim Pol; 2001; 48(1):53-64. PubMed ID: 11440183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics of a biophysical model for beta2-adrenergic and G protein-coupled receptor activation.
    Rubenstein LA; Zauhar RJ; Lanzara RG
    J Mol Graph Model; 2006 Dec; 25(4):396-409. PubMed ID: 16574446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand binding site.
    Wolf S; Böckmann M; Höweler U; Schlitter J; Gerwert K
    FEBS Lett; 2008 Oct; 582(23-24):3335-42. PubMed ID: 18775703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. G protein-coupled receptors self-assemble in dynamics simulations of model bilayers.
    Periole X; Huber T; Marrink SJ; Sakmar TP
    J Am Chem Soc; 2007 Aug; 129(33):10126-32. PubMed ID: 17658882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling flexible loops in the dark-adapted and activated states of rhodopsin, a prototypical G-protein-coupled receptor.
    Nikiforovich GV; Marshall GR
    Biophys J; 2005 Dec; 89(6):3780-9. PubMed ID: 16199504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational change of the transmembrane helices II and IV of metabotropic glutamate receptor involved in G protein activation.
    Yamashita T; Terakita A; Kai T; Shichida Y
    J Neurochem; 2008 Jul; 106(2):850-9. PubMed ID: 18445134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of protonation switches during rhodopsin activation.
    Vogel R; Sakmar TP; Sheves M; Siebert F
    Photochem Photobiol; 2007; 83(2):286-92. PubMed ID: 17576345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular modeling of adenosine receptors: new results and trends.
    Martinelli A; Tuccinardi T
    Med Res Rev; 2008 Mar; 28(2):247-77. PubMed ID: 17492754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavier-than-air flying machines are impossible.
    Oliveira L; Hulsen T; Lutje Hulsik D; Paiva AC; Vriend G
    FEBS Lett; 2004 Apr; 564(3):269-73. PubMed ID: 15111108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of new genes explains lower intron density in mammalian Rhodopsin G protein-coupled receptors.
    Fridmanis D; Fredriksson R; Kapa I; Schiöth HB; Klovins J
    Mol Phylogenet Evol; 2007 Jun; 43(3):864-80. PubMed ID: 17188520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constitutively active mutants of the histamine H1 receptor suggest a conserved hydrophobic asparagine-cage that constrains the activation of class A G protein-coupled receptors.
    Bakker RA; Jongejan A; Sansuk K; Hacksell U; Timmerman H; Brann MR; Weiner DM; Pardo L; Leurs R
    Mol Pharmacol; 2008 Jan; 73(1):94-103. PubMed ID: 17959710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.