These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 16682017)
1. Expression and regulation of SLC39A family zinc transporters in the developing mouse intestine. Huang ZL; Dufner-Beattie J; Andrews GK Dev Biol; 2006 Jul; 295(2):571-9. PubMed ID: 16682017 [TBL] [Abstract][Full Text] [Related]
2. Mouse ZIP1 and ZIP3 genes together are essential for adaptation to dietary zinc deficiency during pregnancy. Dufner-Beattie J; Huang ZL; Geiser J; Xu W; Andrews GK Genesis; 2006 May; 44(5):239-51. PubMed ID: 16652366 [TBL] [Abstract][Full Text] [Related]
3. Targeting of the mouse Slc39a2 (Zip2) gene reveals highly cell-specific patterns of expression, and unique functions in zinc, iron, and calcium homeostasis. Peters JL; Dufner-Beattie J; Xu W; Geiser J; Lahner B; Salt DE; Andrews GK Genesis; 2007 Jun; 45(6):339-52. PubMed ID: 17506078 [TBL] [Abstract][Full Text] [Related]
4. The adaptive response to dietary zinc in mice involves the differential cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5. Dufner-Beattie J; Kuo YM; Gitschier J; Andrews GK J Biol Chem; 2004 Nov; 279(47):49082-90. PubMed ID: 15358787 [TBL] [Abstract][Full Text] [Related]
5. The mouse acrodermatitis enteropathica gene Slc39a4 (Zip4) is essential for early development and heterozygosity causes hypersensitivity to zinc deficiency. Dufner-Beattie J; Weaver BP; Geiser J; Bilgen M; Larson M; Xu W; Andrews GK Hum Mol Genet; 2007 Jun; 16(12):1391-9. PubMed ID: 17483098 [TBL] [Abstract][Full Text] [Related]
6. Mouse zinc transporter 1 gene provides an essential function during early embryonic development. Andrews GK; Wang H; Dey SK; Palmiter RD Genesis; 2004 Oct; 40(2):74-81. PubMed ID: 15452870 [TBL] [Abstract][Full Text] [Related]
7. Dietary zinc absorption: A play of Zips and ZnTs in the gut. Wang X; Zhou B IUBMB Life; 2010 Mar; 62(3):176-82. PubMed ID: 20120011 [TBL] [Abstract][Full Text] [Related]
8. Cooperation of metallothionein and zinc transporters for regulating zinc homeostasis in human intestinal Caco-2 cells. Shen H; Qin H; Guo J Nutr Res; 2008 Jun; 28(6):406-13. PubMed ID: 19083439 [TBL] [Abstract][Full Text] [Related]
9. Altered expression of genes related to zinc homeostasis in early mouse embryos exposed to di-2-ethylhexyl phthalate. Lee J; Park J; Jang B; Knudsen TB Toxicol Lett; 2004 Aug; 152(1):1-10. PubMed ID: 15294341 [TBL] [Abstract][Full Text] [Related]
10. Structure, function, and regulation of a subfamily of mouse zinc transporter genes. Dufner-Beattie J; Langmade SJ; Wang F; Eide D; Andrews GK J Biol Chem; 2003 Dec; 278(50):50142-50. PubMed ID: 14525987 [TBL] [Abstract][Full Text] [Related]
11. Novel zinc-responsive post-transcriptional mechanisms reciprocally regulate expression of the mouse Slc39a4 and Slc39a5 zinc transporters (Zip4 and Zip5). Weaver BP; Dufner-Beattie J; Kambe T; Andrews GK Biol Chem; 2007 Dec; 388(12):1301-12. PubMed ID: 18020946 [TBL] [Abstract][Full Text] [Related]
12. Zinc fluxes and zinc transporter genes in chronic diseases. Devirgiliis C; Zalewski PD; Perozzi G; Murgia C Mutat Res; 2007 Sep; 622(1-2):84-93. PubMed ID: 17374385 [TBL] [Abstract][Full Text] [Related]
14. Structure-function analysis of LIV-1, the breast cancer-associated protein that belongs to a new subfamily of zinc transporters. Taylor KM; Morgan HE; Johnson A; Hadley LJ; Nicholson RI Biochem J; 2003 Oct; 375(Pt 1):51-9. PubMed ID: 12839489 [TBL] [Abstract][Full Text] [Related]
15. The mammalian Zip5 protein is a zinc transporter that localizes to the basolateral surface of polarized cells. Wang F; Kim BE; Petris MJ; Eide DJ J Biol Chem; 2004 Dec; 279(49):51433-41. PubMed ID: 15322118 [TBL] [Abstract][Full Text] [Related]
16. Expression of ZnT and ZIP zinc transporters in the human RPE and their regulation by neurotrophic factors. Leung KW; Liu M; Xu X; Seiler MJ; Barnstable CJ; Tombran-Tink J Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1221-31. PubMed ID: 18326752 [TBL] [Abstract][Full Text] [Related]
17. Structure-function analysis of HKE4, a member of the new LIV-1 subfamily of zinc transporters. Taylor KM; Morgan HE; Johnson A; Nicholson RI Biochem J; 2004 Jan; 377(Pt 1):131-9. PubMed ID: 14525538 [TBL] [Abstract][Full Text] [Related]
18. Tissue-specific alterations in zinc transporter expression in intestine and liver reflect a threshold for homeostatic compensation during dietary zinc deficiency in weanling rats. Jou MY; Hall AG; Philipps AF; Kelleher SL; Lönnerdal B J Nutr; 2009 May; 139(5):835-41. PubMed ID: 19297427 [TBL] [Abstract][Full Text] [Related]
19. Structure-function analysis of a novel member of the LIV-1 subfamily of zinc transporters, ZIP14. Taylor KM; Morgan HE; Johnson A; Nicholson RI FEBS Lett; 2005 Jan; 579(2):427-32. PubMed ID: 15642354 [TBL] [Abstract][Full Text] [Related]
20. Slc39a1 to 3 (subfamily II) Zip genes in mice have unique cell-specific functions during adaptation to zinc deficiency. Kambe T; Geiser J; Lahner B; Salt DE; Andrews GK Am J Physiol Regul Integr Comp Physiol; 2008 May; 294(5):R1474-81. PubMed ID: 18353881 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]