BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 16682056)

  • 81. Intracellular transport of human immunodeficiency virus type 1 genomic RNA and viral production are dependent on dynein motor function and late endosome positioning.
    Lehmann M; Milev MP; Abrahamyan L; Yao XJ; Pante N; Mouland AJ
    J Biol Chem; 2009 May; 284(21):14572-85. PubMed ID: 19286658
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Production of defective virus by terminally differentiated myotubes infected with Rous sarcoma virus.
    Park HT; Hara H; Fujihara M; Hsia KJ; Tanaka A; Furuse T; Iwasaki Y; Kaji A
    Acta Virol; 1995 Sep; 39(4):197-204. PubMed ID: 8825300
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Selective packaging of cellular miRNAs in HIV-1 particles.
    Schopman NC; van Montfort T; Willemsen M; Knoepfel SA; Pollakis G; van Kampen A; Sanders RW; Haasnoot J; Berkhout B
    Virus Res; 2012 Nov; 169(2):438-47. PubMed ID: 22728443
    [TBL] [Abstract][Full Text] [Related]  

  • 84. HIV-1 assembly and budding as targets for drug discovery.
    Li F; Wild C
    Curr Opin Investig Drugs; 2005 Feb; 6(2):148-54. PubMed ID: 15751737
    [TBL] [Abstract][Full Text] [Related]  

  • 85. HIV-1 assembly and maturation.
    Bukrinskaya AG
    Arch Virol; 2004 Jun; 149(6):1067-82. PubMed ID: 15168195
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Live-cell coimaging of the genomic RNAs and Gag proteins of two lentiviruses.
    Kemler I; Meehan A; Poeschla EM
    J Virol; 2010 Jul; 84(13):6352-66. PubMed ID: 20392841
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Inositol phosphates promote HIV-1 assembly and maturation to facilitate viral spread in human CD4+ T cells.
    Sowd GA; Aiken C
    PLoS Pathog; 2021 Jan; 17(1):e1009190. PubMed ID: 33476323
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1.
    Nydegger S; Khurana S; Krementsov DN; Foti M; Thali M
    J Cell Biol; 2006 Jun; 173(5):795-807. PubMed ID: 16735575
    [TBL] [Abstract][Full Text] [Related]  

  • 89. A model system of oral HIV exposure, using human palatine tonsil, reveals extensive binding of HIV infectivity, with limited progression to primary infection.
    Maher D; Wu X; Schacker T; Larson M; Southern P
    J Infect Dis; 2004 Dec; 190(11):1989-97. PubMed ID: 15529264
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Endosomal trafficking of HIV-1 gag and genomic RNAs regulates viral egress.
    Molle D; Segura-Morales C; Camus G; Berlioz-Torrent C; Kjems J; Basyuk E; Bertrand E
    J Biol Chem; 2009 Jul; 284(29):19727-43. PubMed ID: 19451649
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Targeting the assembly of the human immunodeficiency virus type I.
    Muriaux D; Darlix JL; Cimarelli A
    Curr Pharm Des; 2004; 10(30):3725-39. PubMed ID: 15579067
    [TBL] [Abstract][Full Text] [Related]  

  • 92. HIV-1 assembly in macrophages.
    Benaroch P; Billard E; Gaudin R; Schindler M; Jouve M
    Retrovirology; 2010 Apr; 7():29. PubMed ID: 20374631
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The effect of HIV-1 Gag myristoylation on membrane binding.
    Provitera P; El-Maghrabi R; Scarlata S
    Biophys Chem; 2006 Jan; 119(1):23-32. PubMed ID: 16183191
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Sequences within RNA coding for HIV-1 Gag p17 are efficiently targeted to exosomes.
    Columba Cabezas S; Federico M
    Cell Microbiol; 2013 Mar; 15(3):412-29. PubMed ID: 23072732
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Time course of Gag protein assembly in HIV-1-infected cells: a study by immunoelectron microscopy.
    Nermut MV; Zhang WH; Francis G; Ciampor F; Morikawa Y; Jones IM
    Virology; 2003 Jan; 305(1):219-27. PubMed ID: 12504555
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The Src kinase Lck facilitates assembly of HIV-1 at the plasma membrane.
    Strasner AB; Natarajan M; Doman T; Key D; August A; Henderson AJ
    J Immunol; 2008 Sep; 181(5):3706-13. PubMed ID: 18714047
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Syncytia--a major site for the production of the human immunodeficiency virus?
    Dowsett AB; Roff MA; Greenaway PJ; Elphick ER; Farrar GH
    AIDS; 1987 Sep; 1(3):147-50. PubMed ID: 3126754
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Dynamics of HIV-1 assembly and release.
    Ivanchenko S; Godinez WJ; Lampe M; Kräusslich HG; Eils R; Rohr K; Bräuchle C; Müller B; Lamb DC
    PLoS Pathog; 2009 Nov; 5(11):e1000652. PubMed ID: 19893629
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Methods for the study of HIV-1 assembly.
    Waheed AA; Ono A; Freed EO
    Methods Mol Biol; 2009; 485():163-84. PubMed ID: 19020825
    [TBL] [Abstract][Full Text] [Related]  

  • 100. HIV-1 assembly: viral glycoproteins segregate quantally to lipid rafts that associate individually with HIV-1 capsids and virions.
    Leung K; Kim JO; Ganesh L; Kabat J; Schwartz O; Nabel GJ
    Cell Host Microbe; 2008 May; 3(5):285-92. PubMed ID: 18474355
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.