BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 16682174)

  • 1. Subcutaneous delivery of insulin loaded poly(fumaric-co-sebacic anhydride) microspheres to type 1 diabetic rats.
    Furtado S; Abramson D; Simhkay L; Wobbekind D; Mathiowitz E
    Eur J Pharm Biopharm; 2006 Jun; 63(2):229-36. PubMed ID: 16682174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oral delivery of insulin loaded poly(fumaric-co-sebacic) anhydride microspheres.
    Furtado S; Abramson D; Burrill R; Olivier G; Gourd C; Bubbers E; Mathiowitz E
    Int J Pharm; 2008 Jan; 347(1-2):149-55. PubMed ID: 17707601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of novel poly(sebacic anhydride-co-Pluronic F68/F127) biopolymeric microspheres for the controlled release of nifedipine.
    Shelke NB; Aminabhavi TM
    Int J Pharm; 2007 Dec; 345(1-2):51-8. PubMed ID: 17616283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(fumaric-co-sebacic anhydride). A degradation study as evaluated by FTIR, DSC, GPC and X-ray diffraction.
    Santos CA; Freedman BD; Leach KJ; Press DL; Scarpulla M; Mathiowitz E
    J Control Release; 1999 Jun; 60(1):11-22. PubMed ID: 10370167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of microencapsulation method and peptide loading on formulation of poly(lactide-co-glycolide) insulin nanoparticles.
    Kumar PS; Ramakrishna S; Saini TR; Diwan PV
    Pharmazie; 2006 Jul; 61(7):613-7. PubMed ID: 16889069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(sebacic acid-co-ricinoleic acid) biodegradable injectable in situ gelling polymer.
    Shikanov A; Domb AJ
    Biomacromolecules; 2006 Jan; 7(1):288-96. PubMed ID: 16398527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology of polyanhydride microsphere delivery systems.
    Mathiowitz E; Kline D; Langer R
    Scanning Microsc; 1990 Jun; 4(2):329-40. PubMed ID: 2205908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel polyethylene depot device for the study of PLGA and P(FASA) microspheres in vitro and in vivo.
    Sandor M; Harris J; Mathiowitz E
    Biomaterials; 2002 Nov; 23(22):4413-23. PubMed ID: 12219832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copolymers of pharmaceutical grade lactic acid and sebacic acid: drug release behavior and biocompatibility.
    Modi S; Jain JP; Domb AJ; Kumar N
    Eur J Pharm Biopharm; 2006 Nov; 64(3):277-86. PubMed ID: 16846724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats.
    Damgé C; Maincent P; Ubrich N
    J Control Release; 2007 Feb; 117(2):163-70. PubMed ID: 17141909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oral delivery system of insulin microspheres: effect on relative hypoglycemia of diabetic albino rats.
    Senthil Rajan D; Mandal UK; Veeran Gowda K; Bose A; Ganesan M; Pal TK
    Boll Chim Farm; 2004 Oct; 143(8):315-8. PubMed ID: 15884295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prolonged antidiabetic effect of zinc-crystallized insulin loaded glycol chitosan nanoparticles in type 1 diabetic rats.
    Jo HG; Min KH; Nam TH; Na SJ; Park JH; Jeong SY
    Arch Pharm Res; 2008 Jul; 31(7):918-23. PubMed ID: 18704336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of anhydride oligomers within polymer microsphere blends and their impact on bioadhesion and drug delivery in vitro.
    Santos CA; Freedman BD; Ghosn S; Jacob JS; Scarpulla M; Mathiowitz E
    Biomaterials; 2003 Sep; 24(20):3571-83. PubMed ID: 12809786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolytic degradation of ricinoleic-sebacic-ester-anhydride copolymers.
    Krasko MY; Domb AJ
    Biomacromolecules; 2005; 6(4):1877-84. PubMed ID: 16004424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oral and subcutaneous absorption of insulin poly(isobutylcyanoacrylate) nanoparticles.
    Mesiha MS; Sidhom MB; Fasipe B
    Int J Pharm; 2005 Jan; 288(2):289-93. PubMed ID: 15620869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of formulation variables on the characteristics of insulin-loaded poly(lactic-co-glycolic acid) microspheres prepared by a single phase oil in oil solvent evaporation method.
    Hamishehkar H; Emami J; Najafabadi AR; Gilani K; Minaiyan M; Mahdavi H; Nokhodchi A
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):340-9. PubMed ID: 19717287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery.
    Kumar A; Lahiri SS; Singh H
    Int J Pharm; 2006 Oct; 323(1-2):117-24. PubMed ID: 16828246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and evaluation of novel biodegradable microspheres based on poly(d,l-lactide-co-glycolide) and poly(epsilon-caprolactone) for controlled delivery of doxycycline in the treatment of human periodontal pocket: in vitro and in vivo studies.
    Mundargi RC; Srirangarajan S; Agnihotri SA; Patil SA; Ravindra S; Setty SB; Aminabhavi TM
    J Control Release; 2007 May; 119(1):59-68. PubMed ID: 17331611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biologically erodable microspheres as potential oral drug delivery systems.
    Mathiowitz E; Jacob JS; Jong YS; Carino GP; Chickering DE; Chaturvedi P; Santos CA; Vijayaraghavan K; Montgomery S; Bassett M; Morrell C
    Nature; 1997 Mar; 386(6623):410-4. PubMed ID: 9121559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oral insulin delivery using nanoparticles based on microemulsions with different structure-types: optimisation and in vivo evaluation.
    Graf A; Rades T; Hook SM
    Eur J Pharm Sci; 2009 Apr; 37(1):53-61. PubMed ID: 19167488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.