BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 16682341)

  • 1. Comparative neurophysiology: an electric convergence in fish.
    Katz PS
    Curr Biol; 2006 May; 16(9):R327-30. PubMed ID: 16682341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium channel genes and the evolution of diversity in communication signals of electric fishes: convergent molecular evolution.
    Zakon HH; Lu Y; Zwickl DJ; Hillis DM
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3675-80. PubMed ID: 16505358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparable ages for the independent origins of electrogenesis in African and South American weakly electric fishes.
    Lavoué S; Miya M; Arnegard ME; Sullivan JP; Hopkins CD; Nishida M
    PLoS One; 2012; 7(5):e36287. PubMed ID: 22606250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular evolution of communication signals in electric fish.
    Zakon HH; Zwickl DJ; Lu Y; Hillis DM
    J Exp Biol; 2008 Jun; 211(Pt 11):1814-8. PubMed ID: 18490397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular evolution of Na+ channels in teleost fishes.
    Zakon HH; Jost MC; Zwickl DJ; Lu Y; Hillis DM
    Integr Zool; 2009 Mar; 4(1):64-74. PubMed ID: 21392277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic Evidence for Convergent Molecular Adaptation in Electric Fishes.
    Wang Y; Yang L
    Genome Biol Evol; 2021 Mar; 13(3):. PubMed ID: 33638979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecologically mediated differences in electric organ discharge drive evolution in a sodium channel gene in South American electric fishes.
    Hauser FE; Xiao D; Van Nynatten A; Brochu-De Luca KK; Rajakulendran T; Elbassiouny AE; Sivanesan H; Sivananthan P; Crampton WGR; Lovejoy NR
    Biol Lett; 2024 Feb; 20(2):20230480. PubMed ID: 38412964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic comparative analysis of electric communication signals in ghost knifefishes (Gymnotiformes: Apteronotidae).
    Turner CR; Derylo M; de Santana CD; Alves-Gomes JA; Smith GT
    J Exp Biol; 2007 Dec; 210(Pt 23):4104-22. PubMed ID: 18025011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for Non-neutral Evolution in a Sodium Channel Gene in African Weakly Electric Fish (Campylomormyrus, Mormyridae).
    Paul C; Kirschbaum F; Mamonekene V; Tiedemann R
    J Mol Evol; 2016 Aug; 83(1-2):61-77. PubMed ID: 27481396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Waveform discrimination in a pair of pulse-generating electric fishes.
    Waddell JC; Caputi AA
    J Fish Biol; 2020 Apr; 96(4):1065-1071. PubMed ID: 32077109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ontogeny and evolution of electric organs in gymnotiform fish.
    Kirschbaum F; Schwassmann HO
    J Physiol Paris; 2008; 102(4-6):347-56. PubMed ID: 18984049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predation enhances complexity in the evolution of electric fish signals.
    Stoddard PK
    Nature; 1999 Jul; 400(6741):254-6. PubMed ID: 10421365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric organ discharge rhythms and social interactions in a weakly electric fish, Rhamphichthys rostratus, (Rhamphichthyidae, Gymnotiformes) in an aquarium.
    Pimentel-Souza F; Fernandes-Souza N
    Exp Biol; 1987; 46(3):169-76. PubMed ID: 3582587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Petrocephalus of Odzala offer insights into evolutionary patterns of signal diversification in the Mormyridae, a family of weakly electrogenic fishes from Africa.
    Lavoué S; Arnegard ME; Sullivan JP; Hopkins CD
    J Physiol Paris; 2008; 102(4-6):322-39. PubMed ID: 18992333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonhuman genetics. Genomic basis for the convergent evolution of electric organs.
    Gallant JR; Traeger LL; Volkening JD; Moffett H; Chen PH; Novina CD; Phillips GN; Anand R; Wells GB; Pinch M; Güth R; Unguez GA; Albert JS; Zakon HH; Samanta MP; Sussman MR
    Science; 2014 Jun; 344(6191):1522-5. PubMed ID: 24970089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic Tuning of a Potassium Channel in Electric Fish.
    Swapna I; Ghezzi A; York JM; Markham MR; Halling DB; Lu Y; Gallant JR; Zakon HH
    Curr Biol; 2018 Jul; 28(13):2094-2102.e5. PubMed ID: 29937349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proximate and ultimate causes of signal diversity in the electric fish Gymnotus.
    Crampton WG; Rodríguez-Cattáneo A; Lovejoy NR; Caputi AA
    J Exp Biol; 2013 Jul; 216(Pt 13):2523-41. PubMed ID: 23761477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Species-specific diversity of a fixed motor pattern: the electric organ discharge of Gymnotus.
    Rodríguez-Cattaneo A; Pereira AC; Aguilera PA; Crampton WG; Caputi AA
    PLoS One; 2008 May; 3(5):e2038. PubMed ID: 18461122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-natal development of the electromotor system in a pulse gymnotid electric fish.
    Pereira AC; Rodríguez-Cattaneo A; Castelló ME; Caputi AA
    J Exp Biol; 2007 Mar; 210(Pt 5):800-14. PubMed ID: 17297140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Androgen modulates the kinetics of the delayed rectifying K+ current in the electric organ of a weakly electric fish.
    McAnelly ML; Zakon HH
    Dev Neurobiol; 2007 Oct; 67(12):1589-97. PubMed ID: 17562532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.