BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 16682416)

  • 1. Reversible post-translational modification of proteins by nitrated fatty acids in vivo.
    Batthyany C; Schopfer FJ; Baker PR; Durán R; Baker LM; Huang Y; Cerveñansky C; Branchaud BP; Freeman BA
    J Biol Chem; 2006 Jul; 281(29):20450-63. PubMed ID: 16682416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitro-fatty acid reaction with glutathione and cysteine. Kinetic analysis of thiol alkylation by a Michael addition reaction.
    Baker LM; Baker PR; Golin-Bisello F; Schopfer FJ; Fink M; Woodcock SR; Branchaud BP; Radi R; Freeman BA
    J Biol Chem; 2007 Oct; 282(42):31085-93. PubMed ID: 17720974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of Mycobacterium tuberculosis PknG by non-catalytic rubredoxin domain specific modification: reaction of an electrophilic nitro-fatty acid with the Fe-S center.
    Gil M; Graña M; Schopfer FJ; Wagner T; Denicola A; Freeman BA; Alzari PM; Batthyány C; Durán R
    Free Radic Biol Med; 2013 Dec; 65():150-161. PubMed ID: 23792274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism.
    Kansanen E; Bonacci G; Schopfer FJ; Kuosmanen SM; Tong KI; Leinonen H; Woodcock SR; Yamamoto M; Carlberg C; Ylä-Herttuala S; Freeman BA; Levonen AL
    J Biol Chem; 2011 Apr; 286(16):14019-27. PubMed ID: 21357422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glyceraldehyde-3-phosphate dehydrogenase inactivation by peroxynitrite.
    Souza JM; Radi R
    Arch Biochem Biophys; 1998 Dec; 360(2):187-94. PubMed ID: 9851830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis of enzyme inactivation by an endogenous electrophile 4-hydroxy-2-nonenal: identification of modification sites in glyceraldehyde-3-phosphate dehydrogenase.
    Ishii T; Tatsuda E; Kumazawa S; Nakayama T; Uchida K
    Biochemistry; 2003 Apr; 42(12):3474-80. PubMed ID: 12653551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrite and nitrate-dependent generation of anti-inflammatory fatty acid nitroalkenes.
    Delmastro-Greenwood M; Hughan KS; Vitturi DA; Salvatore SR; Grimes G; Potti G; Shiva S; Schopfer FJ; Gladwin MT; Freeman BA; Gelhaus Wendell S
    Free Radic Biol Med; 2015 Dec; 89():333-41. PubMed ID: 26385079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitration of unsaturated fatty acids by nitric oxide-derived reactive nitrogen species peroxynitrite, nitrous acid, nitrogen dioxide, and nitronium ion.
    O'Donnell VB; Eiserich JP; Chumley PH; Jablonsky MJ; Krishna NR; Kirk M; Barnes S; Darley-Usmar VM; Freeman BA
    Chem Res Toxicol; 1999 Jan; 12(1):83-92. PubMed ID: 9894022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of nitro-fatty acid signaling: prostaglandin reductase-1 is a nitroalkene reductase.
    Vitturi DA; Chen CS; Woodcock SR; Salvatore SR; Bonacci G; Koenitzer JR; Stewart NA; Wakabayashi N; Kensler TW; Freeman BA; Schopfer FJ
    J Biol Chem; 2013 Aug; 288(35):25626-25637. PubMed ID: 23878198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-Translational Modification of Proteins Mediated by Nitro-Fatty Acids in Plants: Nitroalkylation.
    Aranda-Caño L; Sánchez-Calvo B; Begara-Morales JC; Chaki M; Mata-Pérez C; Padilla MN; Valderrama R; Barroso JB
    Plants (Basel); 2019 Mar; 8(4):. PubMed ID: 30934982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of nitrosylation and denitrosylation of cytoplasmic glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana.
    Zaffagnini M; Morisse S; Bedhomme M; Marchand CH; Festa M; Rouhier N; Lemaire SD; Trost P
    J Biol Chem; 2013 Aug; 288(31):22777-89. PubMed ID: 23749990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitro-fatty acid metabolome: saturation, desaturation, beta-oxidation, and protein adduction.
    Rudolph V; Schopfer FJ; Khoo NK; Rudolph TK; Cole MP; Woodcock SR; Bonacci G; Groeger AL; Golin-Bisello F; Chen CS; Baker PR; Freeman BA
    J Biol Chem; 2009 Jan; 284(3):1461-73. PubMed ID: 19015269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is inactivated by S-sulfuration in vitro.
    Jarosz AP; Wei W; Gauld JW; Auld J; Özcan F; Aslan M; Mutus B
    Free Radic Biol Med; 2015 Dec; 89():512-21. PubMed ID: 26453916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The discovery of nitro-fatty acids as products of metabolic and inflammatory reactions and mediators of adaptive cell signaling.
    Freeman BA; O'Donnell VB; Schopfer FJ
    Nitric Oxide; 2018 Jul; 77():106-111. PubMed ID: 29742447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and quantification of protein adduction by electrophilic fatty acids: mitochondrial generation of fatty acid nitroalkene derivatives.
    Schopfer FJ; Batthyany C; Baker PR; Bonacci G; Cole MP; Rudolph V; Groeger AL; Rudolph TK; Nadtochiy S; Brookes PS; Freeman BA
    Free Radic Biol Med; 2009 May; 46(9):1250-9. PubMed ID: 19353781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiol-based regulation of glyceraldehyde-3-phosphate dehydrogenase in blood bank-stored red blood cells: a strategy to counteract oxidative stress.
    Rinalducci S; Marrocco C; Zolla L
    Transfusion; 2015 Mar; 55(3):499-506. PubMed ID: 25196942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Chemical Basis of Thiol Addition to Nitro-conjugated Linoleic Acid, a Protective Cell-signaling Lipid.
    Turell L; Vitturi DA; Coitiño EL; Lebrato L; Möller MN; Sagasti C; Salvatore SR; Woodcock SR; Alvarez B; Schopfer FJ
    J Biol Chem; 2017 Jan; 292(4):1145-1159. PubMed ID: 27923813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S-glutathionylation of glyceraldehyde-3-phosphate dehydrogenase induces formation of C150-C154 intrasubunit disulfide bond in the active site of the enzyme.
    Barinova KV; Serebryakova MV; Muronetz VI; Schmalhausen EV
    Biochim Biophys Acta Gen Subj; 2017 Dec; 1861(12):3167-3177. PubMed ID: 28935607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiols mediate superoxide-dependent NADH modification of glyceraldehyde-3-phosphate dehydrogenase.
    Rivera-Nieves J; Thompson WC; Levine RL; Moss J
    J Biol Chem; 1999 Jul; 274(28):19525-31. PubMed ID: 10391884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The thioredoxin-independent isoform of chloroplastic glyceraldehyde-3-phosphate dehydrogenase is selectively regulated by glutathionylation.
    Zaffagnini M; Michelet L; Marchand C; Sparla F; Decottignies P; Le Maréchal P; Miginiac-Maslow M; Noctor G; Trost P; Lemaire SD
    FEBS J; 2007 Jan; 274(1):212-26. PubMed ID: 17140414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.