These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 16682566)

  • 1. An mRNA sequence derived from a programmed frameshifting signal decreases codon discrimination during translation initiation.
    Raman A; Guarraia C; Taliaferro D; Stahl G; Farabaugh PJ
    RNA; 2006 Jul; 12(7):1154-60. PubMed ID: 16682566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An mRNA sequence derived from the yeast EST3 gene stimulates programmed +1 translational frameshifting.
    Taliaferro D; Farabaugh PJ
    RNA; 2007 Apr; 13(4):606-13. PubMed ID: 17329356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translational suppressors and antisuppressors alter the efficiency of the Ty1 programmed translational frameshift.
    Burck CL; Chernoff YO; Liu R; Farabaugh PJ; Liebman SW
    RNA; 1999 Nov; 5(11):1451-7. PubMed ID: 10580473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmed +1 frameshifting stimulated by complementarity between a downstream mRNA sequence and an error-correcting region of rRNA.
    Li Z; Stahl G; Farabaugh PJ
    RNA; 2001 Feb; 7(2):275-84. PubMed ID: 11233984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency of translation initiation by non-AUG codons in Saccharomyces cerevisiae.
    Clements JM; Laz TM; Sherman F
    Mol Cell Biol; 1988 Oct; 8(10):4533-6. PubMed ID: 3141793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saturation mutagenesis of a +1 programmed frameshift-inducing mRNA sequence derived from a yeast retrotransposon.
    Guarraia C; Norris L; Raman A; Farabaugh PJ
    RNA; 2007 Nov; 13(11):1940-7. PubMed ID: 17881742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active role of elongation factor G in maintaining the mRNA reading frame during translation.
    Peng BZ; Bock LV; Belardinelli R; Peske F; Grubmüller H; Rodnina MV
    Sci Adv; 2019 Dec; 5(12):eaax8030. PubMed ID: 31903418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site.
    Belcourt MF; Farabaugh PJ
    Cell; 1990 Jul; 62(2):339-52. PubMed ID: 2164889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A ribosomal frameshifting error during translation of the argI mRNA of Escherichia coli.
    Fu C; Parker J
    Mol Gen Genet; 1994 May; 243(4):434-41. PubMed ID: 7515462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A programmed -1 ribosomal frameshift signal can function as a cis-acting mRNA destabilizing element.
    Plant EP; Wang P; Jacobs JL; Dinman JD
    Nucleic Acids Res; 2004; 32(2):784-90. PubMed ID: 14762205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domains of initiator tRNA and initiation codon crucial for initiator tRNA selection by Escherichia coli IF3.
    Hartz D; Binkley J; Hollingsworth T; Gold L
    Genes Dev; 1990 Oct; 4(10):1790-800. PubMed ID: 1701151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asc1, homolog of human RACK1, prevents frameshifting in yeast by ribosomes stalled at CGA codon repeats.
    Wolf AS; Grayhack EJ
    RNA; 2015 May; 21(5):935-45. PubMed ID: 25792604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptidyl-tRNAs promote translational frameshifting.
    Vimaladithan A; Pande S; Zhao H; Farabaugh PJ
    Nucleic Acids Symp Ser; 1995; (33):190-3. PubMed ID: 8643366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased ribosomal accuracy increases a programmed translational frameshift in Escherichia coli.
    Sipley J; Goldman E
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2315-9. PubMed ID: 8460140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmed frameshifting in the synthesis of mammalian antizyme is +1 in mammals, predominantly +1 in fission yeast, but -2 in budding yeast.
    Ivanov IP; Gesteland RF; Matsufuji S; Atkins JF
    RNA; 1998 Oct; 4(10):1230-8. PubMed ID: 9769097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the codon following the initiation codon on the expression of the lacZ gene in Saccharomyces cerevisiae.
    Looman AC; Laude M; Stahl U
    Yeast; 1991 Feb; 7(2):157-65. PubMed ID: 1905858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA sequences required for translational frameshifting in production of the transposase encoded by IS1.
    Sekine Y; Ohtsubo E
    Mol Gen Genet; 1992 Nov; 235(2-3):325-32. PubMed ID: 1334530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the roles of tRNA structure, ribosomal protein L9, and the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA.
    Herr AJ; Nelson CC; Wills NM; Gesteland RF; Atkins JF
    J Mol Biol; 2001 Jun; 309(5):1029-48. PubMed ID: 11399077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the stacking potential of the base 3' of tandem shift codons on -1 ribosomal frameshifting used for gene expression.
    Bertrand C; Prère MF; Gesteland RF; Atkins JF; Fayet O
    RNA; 2002 Jan; 8(1):16-28. PubMed ID: 11871658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of GUG and AUG initiation codons on the expression of lacZ in Escherichia coli.
    Looman AC; van Knippenberg PH
    FEBS Lett; 1986 Mar; 197(1-2):315-20. PubMed ID: 2419166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.