BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 16682634)

  • 1. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria.
    Kussmaul L; Hirst J
    Proc Natl Acad Sci U S A; 2006 May; 103(20):7607-12. PubMed ID: 16682634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer.
    Pryde KR; Hirst J
    J Biol Chem; 2011 May; 286(20):18056-65. PubMed ID: 21393237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of hydrophilic ubiquinones by the flavin in mitochondrial NADH:ubiquinone oxidoreductase (Complex I) and production of reactive oxygen species.
    King MS; Sharpley MS; Hirst J
    Biochemistry; 2009 Mar; 48(9):2053-62. PubMed ID: 19220002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of reactive oxygen species by complex I (NADH:ubiquinone oxidoreductase) from Escherichia coli and comparison to the enzyme from mitochondria.
    Esterházy D; King MS; Yakovlev G; Hirst J
    Biochemistry; 2008 Mar; 47(12):3964-71. PubMed ID: 18307315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into the superoxide generation sites in bovine heart NADH-ubiquinone oxidoreductase (Complex I): the significance of protein-associated ubiquinone and the dynamic shifting of generation sites between semiflavin and semiquinone radicals.
    Ohnishi ST; Shinzawa-Itoh K; Ohta K; Yoshikawa S; Ohnishi T
    Biochim Biophys Acta; 2010 Dec; 1797(12):1901-9. PubMed ID: 20513438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ternary mechanism for NADH oxidation by positively charged electron acceptors, catalyzed at the flavin site in respiratory complex I.
    Birrell JA; King MS; Hirst J
    FEBS Lett; 2011 Jul; 585(14):2318-22. PubMed ID: 21664911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of superoxide-radical by the NADH:ubiquinone oxidoreductase of heart mitochondria.
    Vinogradov AD; Grivennikova VG
    Biochemistry (Mosc); 2005 Feb; 70(2):120-7. PubMed ID: 15807648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of NADH binding, hydride transfer, and NAD(+) dissociation during NADH oxidation by mitochondrial complex I using modified nicotinamide nucleotides.
    Birrell JA; Hirst J
    Biochemistry; 2013 Jun; 52(23):4048-55. PubMed ID: 23683271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica.
    Galkin A; Brandt U
    J Biol Chem; 2005 Aug; 280(34):30129-35. PubMed ID: 15985426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I).
    Treberg JR; Quinlan CL; Brand MD
    J Biol Chem; 2011 Aug; 286(31):27103-10. PubMed ID: 21659507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactions of the flavin mononucleotide in complex I: a combined mechanism describes NADH oxidation coupled to the reduction of APAD+, ferricyanide, or molecular oxygen.
    Birrell JA; Yakovlev G; Hirst J
    Biochemistry; 2009 Dec; 48(50):12005-13. PubMed ID: 19899808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The flavoprotein subcomplex of complex I (NADH:ubiquinone oxidoreductase) from bovine heart mitochondria: insights into the mechanisms of NADH oxidation and NAD+ reduction from protein film voltammetry.
    Barker CD; Reda T; Hirst J
    Biochemistry; 2007 Mar; 46(11):3454-64. PubMed ID: 17323923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The production of reactive oxygen species by complex I.
    Hirst J; King MS; Pryde KR
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):976-80. PubMed ID: 18793173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining the origins of superoxide and hydrogen peroxide in the mammalian NADH:ubiquinone oxidoreductase.
    Bazil JN; Pannala VR; Dash RK; Beard DA
    Free Radic Biol Med; 2014 Dec; 77():121-9. PubMed ID: 25236739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial complex I.
    Hirst J
    Annu Rev Biochem; 2013; 82():551-75. PubMed ID: 23527692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of H₂O₂ and generation of superoxide radical: role of cytochrome c and NADH.
    Velayutham M; Hemann C; Zweier JL
    Free Radic Biol Med; 2011 Jul; 51(1):160-70. PubMed ID: 21545835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay.
    Grivennikova VG; Kareyeva AV; Vinogradov AD
    Redox Biol; 2018 Jul; 17():192-199. PubMed ID: 29702406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I.
    Hirst J; Roessler MM
    Biochim Biophys Acta; 2016 Jul; 1857(7):872-83. PubMed ID: 26721206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.