These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16682771)

  • 21. Molecular dynamics simulation of the last step of a catalytic cycle: product release from the active site of the enzyme chorismate mutase from Mycobacterium tuberculosis.
    Choutko A; van Gunsteren WF
    Protein Sci; 2012 Nov; 21(11):1672-81. PubMed ID: 22898919
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discovery and structure optimization of a series of isatin derivatives as Mycobacterium tuberculosis chorismate mutase inhibitors.
    Jeankumar VU; Alokam R; Sridevi JP; Suryadevara P; Matikonda SS; Peddi S; Sahithi S; Alvala M; Yogeeswari P; Sriram D
    Chem Biol Drug Des; 2014 Apr; 83(4):498-506. PubMed ID: 24636345
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural evolution of differential amino acid effector regulation in plant chorismate mutases.
    Westfall CS; Xu A; Jez JM
    J Biol Chem; 2014 Oct; 289(41):28619-28. PubMed ID: 25160622
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ligand based virtual screening and biological evaluation of inhibitors of chorismate mutase (Rv1885c) from Mycobacterium tuberculosis H37Rv.
    Agrawal H; Kumar A; Bal NC; Siddiqi MI; Arora A
    Bioorg Med Chem Lett; 2007 Jun; 17(11):3053-8. PubMed ID: 17418569
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The 1.30 A resolution structure of the Bacillus subtilis chorismate mutase catalytic homotrimer.
    Ladner JE; Reddy P; Davis A; Tordova M; Howard AJ; Gilliland GL
    Acta Crystallogr D Biol Crystallogr; 2000 Jun; 56(Pt 6):673-83. PubMed ID: 10818343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural analysis of a 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase with an N-terminal chorismate mutase-like regulatory domain.
    Light SH; Halavaty AS; Minasov G; Shuvalova L; Anderson WF
    Protein Sci; 2012 Jun; 21(6):887-95. PubMed ID: 22505283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolving the naturally compromised chorismate mutase from Mycobacterium tuberculosis to top performance.
    Fahrig-Kamarauskait J; Würth-Roderer K; Thorbjørnsrud HV; Mailand S; Krengel U; Kast P
    J Biol Chem; 2020 Dec; 295(51):17514-17534. PubMed ID: 33453995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystallization and preliminary X-ray diffraction analysis of prephenate dehydratase from Mycobacterium tuberculosis H37Rv.
    Vivan AL; Dias MV; Schneider CZ; de Azevedo WF; Basso LA; Santos DS
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Apr; 62(Pt 4):357-60. PubMed ID: 16582484
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design, synthesis, and evaluation of aza inhibitors of chorismate mutase.
    Hediger ME
    Bioorg Med Chem; 2004 Sep; 12(18):4995-5010. PubMed ID: 15336279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The emerging periplasm-localized subclass of AroQ chorismate mutases, exemplified by those from Salmonella typhimurium and Pseudomonas aeruginosa.
    Calhoun DH; Bonner CA; Gu W; Xie G; Jensen RA
    Genome Biol; 2001; 2(8):RESEARCH0030. PubMed ID: 11532214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and structure-activity relationship study of carvacrol derivatives as Mycobacterium tuberculosis chorismate mutase inhibitors.
    Alokam R; Jeankumar VU; Sridevi JP; Matikonda SS; Peddi S; Alvala M; Yogeeswari P; Sriram D
    J Enzyme Inhib Med Chem; 2014 Aug; 29(4):547-54. PubMed ID: 24090423
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monofunctional chorismate mutase from Serratia rubidaea: a paradigm system for the three-isozyme gene family of enteric bacteria.
    Xia T; Jensen RA
    Arch Biochem Biophys; 1992 Apr; 294(1):147-53. PubMed ID: 1550340
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A glutamate residue in the catalytic center of the yeast chorismate mutase restricts enzyme activity to acidic conditions.
    Schnappauf G; Sträter N; Lipscomb WN; Braus GH
    Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8491-6. PubMed ID: 9238004
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of active site residues of chorismate mutase-prephenate dehydrogenase from Escherichia coli.
    Christendat D; Turnbull J
    Biochemistry; 1996 Apr; 35(14):4468-79. PubMed ID: 8605196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 13C NMR studies of the enzyme-product complex of Bacillus subtilis chorismate mutase.
    Rajagopalan JS; Taylor KM; Jaffe EK
    Biochemistry; 1993 Apr; 32(15):3965-72. PubMed ID: 8471608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystallization and preliminary X-ray crystallographic studies of chorismate synthase from Helicobacter pylori.
    Ahn HJ; Yang JK; Lee BI; Yoon HJ; Kim HW; Suh SW
    Acta Crystallogr D Biol Crystallogr; 2003 Mar; 59(Pt 3):569-71. PubMed ID: 12595729
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Remote Control by Inter-Enzyme Allostery: A Novel Paradigm for Regulation of the Shikimate Pathway.
    Munack S; Roderer K; Ökvist M; Kamarauskaite J; Sasso S; van Eerde A; Kast P; Krengel U
    J Mol Biol; 2016 Mar; 428(6):1237-1255. PubMed ID: 26776476
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrostatic transition state stabilization rather than reactant destabilization provides the chemical basis for efficient chorismate mutase catalysis.
    Burschowsky D; van Eerde A; Ökvist M; Kienhöfer A; Kast P; Hilvert D; Krengel U
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17516-21. PubMed ID: 25422475
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of phenylalanine and tyrosine biosynthesis in Pseudomonas aureofaciens ATCC 15926.
    Blumenstock E; Salcher O; Lingens F
    J Gen Microbiol; 1980 Mar; 117(1):81-7. PubMed ID: 7391822
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystallization and preliminary X-ray crystallographic studies of the N-terminal domain of FadD28, a fatty-acyl AMP ligase from Mycobacterium tuberculosis.
    Goyal A; Yousuf M; Rajakumara E; Arora P; Gokhale RS; Sankaranarayanan R
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Apr; 62(Pt 4):350-2. PubMed ID: 16582482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.