These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 166828)

  • 21. Enhancement by ethanol of parathyroid-hormone-stimulated cyclic AMP accumulation in isolated renal tubules.
    Biddulph DM; Wrenn RW; Currie MG; Hubbard WR
    Miner Electrolyte Metab; 1983; 9(2):76-81. PubMed ID: 6302464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antidiuretic and urinary cyclic AMP response of vasopressin in normal rats and in rats with lithium-polyuria.
    Christensen S; Geisler A
    Acta Pharmacol Toxicol (Copenh); 1977 Mar; 40(3):447-54. PubMed ID: 190861
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activation of adenylate cyclase in renal medulla by bovine growth hormone. An artifact attributable to vasopressin.
    Leichter SB; Chase LR
    Biochim Biophys Acta; 1975 Aug; 399(2):291-301. PubMed ID: 1174531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclic AMP, adenylate cyclase and cyclic AMP-phosphodiesterase activities in diabetic rat adipocytes.
    Chiappe de Cingolani GE
    Acta Physiol Pharmacol Latinoam; 1986; 36(1):39-46. PubMed ID: 3020875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Demeclocycline attenuates hyponatremia by reducing aquaporin-2 expression in the renal inner medulla.
    Kortenoeven ML; Sinke AP; Hadrup N; Trimpert C; Wetzels JF; Fenton RA; Deen PM
    Am J Physiol Renal Physiol; 2013 Dec; 305(12):F1705-18. PubMed ID: 24154696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of protein kinase by vasopressin in renal medulla in situ.
    Dousa TP; Barnes LD
    Am J Physiol; 1977 Jan; 232(1):F50-7. PubMed ID: 189620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Renal adenylate cyclase and the interrelationship between parathyroid hormone and vitamin D in the regulation of urinary phosphate and adenosine cyclic 3',5'-monophosphate excretion.
    Forte LR; Nickols GA; Anast CS
    J Clin Invest; 1976 Mar; 57(3):559-68. PubMed ID: 175088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dissociation between plasma, urine, and renal papillary cyclic AMP content following vasopressin and DDAVP.
    Bia MJ; Dewitt S; Forrest JN
    Am J Physiol; 1979 Sep; 237(3):F218-25. PubMed ID: 224712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of somatostatin on vasopressin-induced antidiuresis and renal cyclic AMP of rats.
    Winkler SN; Torikai S; Levine BS; Kurokawa K
    Miner Electrolyte Metab; 1982 Jan; 7(1):8-14. PubMed ID: 6133212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impaired cyclic AMP generation in outer medullary tubules of gentamicin-treated rats.
    Kidwell D; Subramaniam S; Ott C; Jackson B
    Eur J Pharmacol; 1990 Dec; 191(3):489-92. PubMed ID: 1707820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular interactions between vasopressin and prostaglandins in the mammalian kidney.
    Dousa TP; Northrup TE
    Contrib Nephrol; 1978; 12():106-15. PubMed ID: 212251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional profile of the isolated uremic nephron. Impaired water permeability and adenylate cyclase responsiveness of the cortical collecting tubule to vasopressin.
    Fine LG; Schlondorff D; Trizna W; Gilbert RM; Bricker NS
    J Clin Invest; 1978 Jun; 61(6):1519-27. PubMed ID: 207738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glucagon-sensitive adenylate cyclase in human renal medulla.
    Mulvehill JB; Hui YS; Barnes LD; Palumbo PJ; Dousa TP
    J Clin Endocrinol Metab; 1976 Feb; 42(2):380-4. PubMed ID: 4466
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Subcellular distribution of the enzymes related to the cellular action of vasopressin in renal medulla.
    Barnes LD; Hui YS; Frohnert PP; Dousa TP
    Endocrinology; 1975 Jan; 96(1):119-28. PubMed ID: 162875
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of glucocorticoid deficiency on renal medullary cyclic adenosine monophosphate of rats.
    Kurokawa K; Aznar E; Descoeudres C; Zulueta A; Massry SG
    Clin Sci Mol Med; 1978 May; 54(5):573-7. PubMed ID: 219986
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of divalent ions on basal and hormone-activated renal adenylate cyclase/cyclic AMP system.
    Wald H; Popovtzer MM
    Miner Electrolyte Metab; 1984; 10(2):133-40. PubMed ID: 6321938
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction between catecholamines and vasopressin on renal medullary cyclic AMP of rat.
    Kurokawa K; Massry SG
    Am J Physiol; 1973 Oct; 225(4):825-9. PubMed ID: 4147553
    [No Abstract]   [Full Text] [Related]  

  • 38. Effect of potassium depletion on the vasopressin-sensitive cyclic AMP system in rat outer medullary tubules.
    Kim JK; Jackson BA; Edwards RM; Dousa TP
    J Lab Clin Med; 1982 Jan; 99(1):29-38. PubMed ID: 6274983
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rat kidney cells in primary culture: hormone-mediated desensitization of the adenosine 3',5'-monophosphate response to parathyroid hormone and calcitonin.
    Chao WI; Forte LR
    Endocrinology; 1982 Jul; 111(1):252-9. PubMed ID: 6177527
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Augmentation by chlorpropamide of 1-deamino-8-D-arginine vasopressin-induced antidiuresis and stimulation of renal medullary adenylate cyclase and accumulation of adenosine 3',5'-monophosphate.
    Moses AM; Coulson R
    Endocrinology; 1980 Mar; 106(3):967-72. PubMed ID: 6243558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.