These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
433 related articles for article (PubMed ID: 16683009)
1. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Liu Y Prostate Cancer Prostatic Dis; 2006; 9(3):230-4. PubMed ID: 16683009 [TBL] [Abstract][Full Text] [Related]
2. Peroxisomal branched chain fatty acid beta-oxidation pathway is upregulated in prostate cancer. Zha S; Ferdinandusse S; Hicks JL; Denis S; Dunn TA; Wanders RJ; Luo J; De Marzo AM; Isaacs WB Prostate; 2005 Jun; 63(4):316-23. PubMed ID: 15599942 [TBL] [Abstract][Full Text] [Related]
3. Novel lipogenic enzyme ELOVL7 is involved in prostate cancer growth through saturated long-chain fatty acid metabolism. Tamura K; Makino A; Hullin-Matsuda F; Kobayashi T; Furihata M; Chung S; Ashida S; Miki T; Fujioka T; Shuin T; Nakamura Y; Nakagawa H Cancer Res; 2009 Oct; 69(20):8133-40. PubMed ID: 19826053 [TBL] [Abstract][Full Text] [Related]
8. Dietary fatty acids correlate with prostate cancer biopsy grade and volume in Jamaican men. Ritch CR; Wan RL; Stephens LB; Taxy JB; Huo D; Gong EM; Zagaja GP; Brendler CB J Urol; 2007 Jan; 177(1):97-101; discussion 101. PubMed ID: 17162011 [TBL] [Abstract][Full Text] [Related]
9. [Ratio between carbohydrate and lipid metabolism in muscle cell energy metabolism during ATPase loading. Mathematical model]. Dynnik VV Biofizika; 1981; 26(4):712-8. PubMed ID: 6456774 [TBL] [Abstract][Full Text] [Related]
10. Prostate carcinoma cells selected by long-term exposure to reduced oxygen tension show remarkable biochemical plasticity via modulation of superoxide, HIF-1alpha levels, and energy metabolism. Bourdeau-Heller J; Oberley TD J Cell Physiol; 2007 Sep; 212(3):744-52. PubMed ID: 17458899 [TBL] [Abstract][Full Text] [Related]
11. Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects. Bandyopadhyay GK; Yu JG; Ofrecio J; Olefsky JM Diabetes; 2006 Aug; 55(8):2277-85. PubMed ID: 16873691 [TBL] [Abstract][Full Text] [Related]
12. Regulation of fatty acid oxidation in chicken (Gallus gallus): interactions between genotype and diet composition. Collin A; Swennen Q; Skiba-Cassy S; Buyse J; Chartrin P; Le Bihan-Duval E; Crochet S; Duclos MJ; Joubert R; Decuypere E; Tesseraud S Comp Biochem Physiol B Biochem Mol Biol; 2009 Jun; 153(2):171-7. PubMed ID: 19258045 [TBL] [Abstract][Full Text] [Related]
13. Adaptation of energy metabolism in breast cancer brain metastases. Chen EI; Hewel J; Krueger JS; Tiraby C; Weber MR; Kralli A; Becker K; Yates JR; Felding-Habermann B Cancer Res; 2007 Feb; 67(4):1472-86. PubMed ID: 17308085 [TBL] [Abstract][Full Text] [Related]
14. Proteome analysis of fatty liver in feed-deprived dairy cows reveals interaction of fuel sensing, calcium, fatty acid, and glycogen metabolism. Kuhla B; Albrecht D; Kuhla S; Metges CC Physiol Genomics; 2009 Apr; 37(2):88-98. PubMed ID: 19240300 [TBL] [Abstract][Full Text] [Related]
15. [Changes of myocardial enzymes related to glycolysis and fatty acid metabolism in chronic myocardial ischemia: experiment with pigs]. Gong J; Wang HY; Pu JL; Zheng YL; Shen R; Yang MF; He ZX Zhonghua Yi Xue Za Zhi; 2008 Aug; 88(31):2209-13. PubMed ID: 19080674 [TBL] [Abstract][Full Text] [Related]
16. Rapamycin-mediated inhibition of mammalian target of rapamycin in skeletal muscle cells reduces glucose utilization and increases fatty acid oxidation. Sipula IJ; Brown NF; Perdomo G Metabolism; 2006 Dec; 55(12):1637-44. PubMed ID: 17142137 [TBL] [Abstract][Full Text] [Related]
17. Correlations of dietary patterns with prostate health. Stacewicz-Sapuntzakis M; Borthakur G; Burns JL; Bowen PE Mol Nutr Food Res; 2008 Jan; 52(1):114-30. PubMed ID: 18080240 [TBL] [Abstract][Full Text] [Related]
18. Lysosomal and prostasomal hydrolytic enzymes and redox processes and initiation of prostate cancer. Tappel A Med Hypotheses; 2005; 64(6):1170-2. PubMed ID: 15823710 [TBL] [Abstract][Full Text] [Related]
19. Control of lipid oxidation during exercise: role of energy state and mitochondrial factors. Sahlin K; Harris RC Acta Physiol (Oxf); 2008 Dec; 194(4):283-91. PubMed ID: 18557841 [TBL] [Abstract][Full Text] [Related]
20. Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts. Sorokina N; O'Donnell JM; McKinney RD; Pound KM; Woldegiorgis G; LaNoue KF; Ballal K; Taegtmeyer H; Buttrick PM; Lewandowski ED Circulation; 2007 Apr; 115(15):2033-41. PubMed ID: 17404155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]