BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 16683206)

  • 1. Attentional modulation of firing rate and synchrony in a model cortical network.
    Buia C; Tiesinga P
    J Comput Neurosci; 2006 Jun; 20(3):247-64. PubMed ID: 16683206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulus competition by inhibitory interference.
    Tiesinga PH
    Neural Comput; 2005 Nov; 17(11):2421-53. PubMed ID: 16156934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory synchrony as a mechanism for attentional gain modulation.
    Tiesinga PH; Fellous JM; Salinas E; José JV; Sejnowski TJ
    J Physiol Paris; 2004; 98(4-6):296-314. PubMed ID: 16274973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid temporal modulation of synchrony by competition in cortical interneuron networks.
    Tiesinga PH; Sejnowski TJ
    Neural Comput; 2004 Feb; 16(2):251-75. PubMed ID: 15006096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of synchronization between two modules of pulse neural networks with excitatory and inhibitory connections.
    Kanamaru T
    Neural Comput; 2006 May; 18(5):1111-31. PubMed ID: 16595059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective attention through phase relationship of excitatory and inhibitory input synchrony in a model cortical neuron.
    Mishra J; Fellous JM; Sejnowski TJ
    Neural Netw; 2006 Nov; 19(9):1329-46. PubMed ID: 17027225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial attention in area V4 is mediated by circuits in primary visual cortex.
    Tiesinga PH; Buia CI
    Neural Netw; 2009 Oct; 22(8):1039-54. PubMed ID: 19643574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different types of signal coupling in the visual cortex related to neural mechanisms of associative processing and perception.
    Eckhorn R; Gail AM; Bruns A; Gabriel A; Al-Shaikhli B; Saam M
    IEEE Trans Neural Netw; 2004 Sep; 15(5):1039-52. PubMed ID: 15484881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rate and synchrony in feedforward networks of coincidence detectors: analytical solution.
    Mikula S; Niebur E
    Neural Comput; 2005 Apr; 17(4):881-902. PubMed ID: 15829093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic gain changes during attentional modulation.
    Sripati AP; Johnson KO
    Neural Comput; 2006 Aug; 18(8):1847-67. PubMed ID: 16771655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the top-down influences on the lateral interactions in the visual cortex.
    Setić M; Domijan D
    Brain Res; 2008 Aug; 1225():86-101. PubMed ID: 18620341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Anatomically Constrained Model of V1 Simple Cells Predicts the Coexistence of Push-Pull and Broad Inhibition.
    Taylor MM; Contreras D; Destexhe A; Frégnac Y; Antolik J
    J Neurosci; 2021 Sep; 41(37):7797-7812. PubMed ID: 34321313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of the synchronization between cells in visual cortex by contextual targets.
    Bretzner F; Aïtoubah J; Shumikhina S; Tan YF; Molotchnikoff S
    Eur J Neurosci; 2001 Nov; 14(9):1539-54. PubMed ID: 11722616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulus-selective spiking is driven by the relative timing of synchronous excitation and disinhibition in cat striate neurons in vivo.
    Azouz R; Gray CM
    Eur J Neurosci; 2008 Oct; 28(7):1286-300. PubMed ID: 18973556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconciling coherent oscillation with modulation of irregular spiking activity in selective attention: gamma-range synchronization between sensory and executive cortical areas.
    Ardid S; Wang XJ; Gomez-Cabrero D; Compte A
    J Neurosci; 2010 Feb; 30(8):2856-70. PubMed ID: 20181583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changing excitation and inhibition in simulated neural networks: effects on induced bursting behavior.
    Kudela P; Franaszczuk PJ; Bergey GK
    Biol Cybern; 2003 Apr; 88(4):276-85. PubMed ID: 12690486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model.
    Kumar A; Rotter S; Aertsen A
    J Neurosci; 2008 May; 28(20):5268-80. PubMed ID: 18480283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of visual responsiveness by spontaneous local network activity in vivo.
    Haider B; Duque A; Hasenstaub AR; Yu Y; McCormick DA
    J Neurophysiol; 2007 Jun; 97(6):4186-202. PubMed ID: 17409168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spike timing dependent plasticity promotes synchrony of inhibitory networks in the presence of heterogeneity.
    Talathi SS; Hwang DU; Ditto WL
    J Comput Neurosci; 2008 Oct; 25(2):262-81. PubMed ID: 18297384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using phase resetting to predict 1:1 and 2:2 locking in two neuron networks in which firing order is not always preserved.
    Maran SK; Canavier CC
    J Comput Neurosci; 2008 Feb; 24(1):37-55. PubMed ID: 17577651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.