BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16683591)

  • 1. Partitioning CO2 effluxes from an Atlantic pine forest soil between endogenous soil organic matter and recently incorporated 13C-enriched plant material.
    Fernandez I; Cabaneiro A; González-Prieto SJ
    Environ Sci Technol; 2006 Apr; 40(8):2552-8. PubMed ID: 16683591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of 13C to monitor soil organic matter transformations caused by a simulated forest fire.
    Fernandez I; Cabaneiro A; González-Prieto SJ
    Rapid Commun Mass Spectrom; 2004; 18(4):435-42. PubMed ID: 14966850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil CO2 emissions from Northern Andean páramo ecosystems: effects of fallow agriculture.
    Cabaneiro A; Fernandez I; Pérez-Ventura L; Carballas T
    Environ Sci Technol; 2008 Mar; 42(5):1408-15. PubMed ID: 18441781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Humus quality after eucalypt reforestations in Asturias (Northern Spain).
    Cristina Zancada M; Almendros G; Jiménez Ballesta R
    Sci Total Environ; 2003 Sep; 313(1-3):245-58. PubMed ID: 12922075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs.
    Biasi C; Rusalimova O; Meyer H; Kaiser C; Wanek W; Barsukov P; Junger H; Richter A
    Rapid Commun Mass Spectrom; 2005; 19(11):1401-8. PubMed ID: 15880633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 13C-isotopic fingerprint of Pinus pinaster Ait. and Pinus sylvestris L. wood related to the quality of standing tree mass in forests from NW Spain.
    Fernandez I; González-Prieto SJ; Cabaneiro A
    Rapid Commun Mass Spectrom; 2005; 19(22):3199-206. PubMed ID: 16208761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrimination against 13C during degradation of simple and complex substrates by two white rot fungi.
    Fernandez I; Cadisch G
    Rapid Commun Mass Spectrom; 2003; 17(23):2614-20. PubMed ID: 14648898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter.
    Haddix ML; Paul EA; Cotrufo MF
    Glob Chang Biol; 2016 Jun; 22(6):2301-12. PubMed ID: 27142168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of N and P addition on soil organic C potential mineralization in forest soils in South China.
    Ouyang X; Zhou G; Huang Z; Zhou C; Li J; Shi J; Zhang D
    J Environ Sci (China); 2008; 20(9):1082-9. PubMed ID: 19143315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of 13C and 15N mass spectrometry to study the decomposition of Calamagrostis epigeios in soil column experiments with and without ash additions.
    Ludwig B; Heil B; Flessa H; Beese F
    Isotopes Environ Health Stud; 2000; 36(1):49-61. PubMed ID: 11022325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Not all soil carbon is created equal: Labile and stable pools under nitrogen input.
    Zang H; Mehmood I; Kuzyakov Y; Jia R; Gui H; Blagodatskaya E; Xu X; Smith P; Chen H; Zeng Z; Fan M
    Glob Chang Biol; 2024 Jul; 30(7):e17405. PubMed ID: 38973563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil CO2 efflux in a mixed pine-oak forest in Valsaín (central Spain).
    Inclán R; De la Torre D; Benito M; Rubio A
    ScientificWorldJournal; 2007 Mar; 7 Suppl 1():166-74. PubMed ID: 17450294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting effects of elevated CO2 and warming on temperature sensitivity of soil organic matter decomposition in a Chinese paddy field.
    Chen Z; Wang B; Wang J; Pan G; Xiong Z
    Environ Monit Assess; 2015 Oct; 188(10):545. PubMed ID: 27590882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil organic carbon and nitrogen pools drive soil C-CO2 emissions from selected soils in Maritime Antarctica.
    Pires CV; Schaefer CERG; Hashigushi AK; Thomazini A; Filho EIF; Mendonça ES
    Sci Total Environ; 2017 Oct; 596-597():124-135. PubMed ID: 28431357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Earthworm effects on the incorporation of litter C and N into soil organic matter in a sugar maple forest.
    Fahey TJ; Yavitt JB; Sherman RE; Maerz JC; Groffman PM; Fisk MC; Bohlen PJ
    Ecol Appl; 2013 Jul; 23(5):1185-201. PubMed ID: 23967585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abiotic Bromination of Soil Organic Matter.
    Leri AC; Ravel B
    Environ Sci Technol; 2015 Nov; 49(22):13350-9. PubMed ID: 26468620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three sources of CO2 efflux from soil partitioned by 13C natural abundance in an incubation study.
    Kuzyakov Y; Bol R
    Rapid Commun Mass Spectrom; 2005; 19(11):1417-23. PubMed ID: 15880635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Soil organic carbon and nitrogen mineralization along a forest successional gradient in Southern China].
    Ouyang XJ; Zhou GY; Wei SG; Huang ZL; Li J; Zhang DQ
    Ying Yong Sheng Tai Xue Bao; 2007 Aug; 18(8):1688-94. PubMed ID: 17974230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material.
    Erhagen B; Öquist M; Sparrman T; Haei M; Ilstedt U; Hedenström M; Schleucher J; Nilsson MB
    Glob Chang Biol; 2013 Dec; 19(12):3858-71. PubMed ID: 23907960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactive effects of elevated CO2 and nitrogen deposition on fatty acid molecular and isotope composition of above- and belowground tree biomass and forest soil fractions.
    Griepentrog M; Eglinton TI; Hagedorn F; Schmidt MW; Wiesenberg GL
    Glob Chang Biol; 2015 Jan; 21(1):473-86. PubMed ID: 24953725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.