These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 16683691)

  • 1. Immunolocalization of tandem pore domain K+ channels in the rat carotid body.
    Yamamoto Y; Taniguchi K
    Adv Exp Med Biol; 2006; 580():9-14; discussion 351-9. PubMed ID: 16683691
    [No Abstract]   [Full Text] [Related]  

  • 2. Heterogeneous expression of TASK-3 and TRAAK in rat paraganglionic cells.
    Yamamoto Y; Taniguchi K
    Histochem Cell Biol; 2003 Oct; 120(4):335-9. PubMed ID: 14574589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of a TASK-like potassium channel in rat carotid body type I cells by ATP.
    Varas R; Buckler KJ
    Adv Exp Med Biol; 2006; 580():167-72; discussion 351-9. PubMed ID: 16683714
    [No Abstract]   [Full Text] [Related]  

  • 4. Expression of tandem P domain K+ channel, TREK-1, in the rat carotid body.
    Yamamoto Y; Taniguchi K
    J Histochem Cytochem; 2006 Apr; 54(4):467-72. PubMed ID: 16344329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TASK-1, TASK-2, TASK-3 and TRAAK immunoreactivities in the rat carotid body.
    Yamamoto Y; Kummer W; Atoji Y; Suzuki Y
    Brain Res; 2002 Sep; 950(1-2):304-7. PubMed ID: 12231257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen sensing with ion channels.
    Kim D
    Channels (Austin); 2014; 8(4):290-1. PubMed ID: 25068295
    [No Abstract]   [Full Text] [Related]  

  • 7. Postnatal changes in gene expression of subfamilies of TASK K+ channels in rat carotid body.
    Kim I; Kim JH; Carroll JL
    Adv Exp Med Biol; 2006; 580():43-7; discussion 351-9. PubMed ID: 16683696
    [No Abstract]   [Full Text] [Related]  

  • 8. Modulation of TASK-like background potassium channels in rat arterial chemoreceptor cells by intracellular ATP and other nucleotides.
    Varas R; Wyatt CN; Buckler KJ
    J Physiol; 2007 Sep; 583(Pt 2):521-36. PubMed ID: 17615104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholecystokinin-like immunoreactivity in cat extra-adrenal paraganglia.
    Kummer W; Addicks K; Henkel H; Heym C
    Neurosci Lett; 1985 Apr; 55(2):207-10. PubMed ID: 3889724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of TASK-like K+ channels in oxygen sensing in the carotid body.
    Buckler KJ; Williams BA; Orozco RV; Wyatt CN
    Novartis Found Symp; 2006; 272():73-85; discussion 85-94, 131-40. PubMed ID: 16686430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of gene expression in subfamilies of TASK K+ channels by chronic hyperoxia exposure in rat carotid body.
    Kim I; Donnelly DF; Carroll JL
    Adv Exp Med Biol; 2006; 580():37-41; discussion 351-9. PubMed ID: 16683695
    [No Abstract]   [Full Text] [Related]  

  • 12. Inhibition of rat carotid body glomus cells TASK-like channels by acute hypoxia is enhanced by chronic intermittent hypoxia.
    Ortiz FC; Del Rio R; Ebensperger G; Reyes VR; Alcayaga J; Varas R; Iturriaga R
    Respir Physiol Neurobiol; 2013 Feb; 185(3):600-7. PubMed ID: 23219812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of p11 and Heteromeric TASK Channels in Rat Carotid Body Glomus Cells and Nerve Growth Factor-differentiated PC12 Cells.
    Matsuoka H; Pokorski M; Harada K; Yoshimura R; Inoue M
    J Histochem Cytochem; 2020 Oct; 68(10):679-690. PubMed ID: 32886017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular distribution of oxygen sensor candidates-oxidases, cytochromes, K+-channels--in the carotid body.
    Kummer W; Yamamoto Y
    Microsc Res Tech; 2002 Nov; 59(3):234-42. PubMed ID: 12384967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxic responses of arterial chemoreceptors in rabbits are primarily mediated by leak K channels.
    Kobayashi N; Yamamoto Y
    Adv Exp Med Biol; 2010; 669():195-9. PubMed ID: 20217348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presence of nicotinic, purinergic and dopaminergic receptors and the TASK-1 K+-channel in the mouse carotid body.
    Kåhlin J; Eriksson LI; Ebberyd A; Fagerlund MJ
    Respir Physiol Neurobiol; 2010 Jul; 172(3):122-8. PubMed ID: 20452469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TASK-like potassium channels and oxygen sensing in the carotid body.
    Buckler KJ
    Respir Physiol Neurobiol; 2007 Jul; 157(1):55-64. PubMed ID: 17416212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of K₂p channels in stimulus-secretion coupling.
    Kim D; Kang D
    Pflugers Arch; 2015 May; 467(5):1001-11. PubMed ID: 25476848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen sulfide and hypoxia-induced changes in TASK (K2P3/9) activity and intracellular Ca(2+) concentration in rat carotid body glomus cells.
    Kim D; Kim I; Wang J; White C; Carroll JL
    Respir Physiol Neurobiol; 2015 Aug; 215():30-8. PubMed ID: 25956223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doxapram stimulates carotid body with different mechanisms from hypoxic chemotransduction.
    Takahashi T; Osanai S; Nakano H; Ohsaki Y; Kikuchi K
    Adv Exp Med Biol; 2003; 536():129-34. PubMed ID: 14635658
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.