BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 16683698)

  • 1. Effect of carbon dioxide on the structure of the carotid body: a comparison between normoxic and hypoxic conditions.
    Kusakabe T; Hirakawa H; Oikawa S; Matsuda H; Hayashida Y
    Adv Exp Med Biol; 2006; 580():55-61; discussion 351-9. PubMed ID: 16683698
    [No Abstract]   [Full Text] [Related]  

  • 2. Rat carotid bodies in systemic hypoxia. Involvement of arterial CO2 tension in morphological changes.
    Kusakabe T; Matsuda H; Hayashida Y
    Adv Exp Med Biol; 2003; 536():611-7. PubMed ID: 14635719
    [No Abstract]   [Full Text] [Related]  

  • 3. Morphological changes in the rat carotid body 1, 2, 4, and 8 weeks after the termination of chronically hypocapnic hypoxia.
    Kusakabe T; Hirakawa H; Oikawa S; Matsuda H; Kawakami T; Takenaka T; Hayashida Y
    Histol Histopathol; 2004 Oct; 19(4):1133-40. PubMed ID: 15375756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological changes in the rat carotid body in acclimatization and deacclimatization to hypoxia.
    Matsuda H; Hirakawa H; Oikawa S; Hayashida Y; Kusakabe T
    Adv Exp Med Biol; 2006; 580():49-54; discussion 351-9. PubMed ID: 16683697
    [No Abstract]   [Full Text] [Related]  

  • 5. Changes in the peptidergic innervation of the rat carotid body a month after the termination of chronic hypoxia.
    Kusakabe T; Hayashida Y; Matsuda H; Kawakami T; Takenaka T
    Adv Exp Med Biol; 2000; 475():793-9. PubMed ID: 10849722
    [No Abstract]   [Full Text] [Related]  

  • 6. Morphological adaptation of the peptidergic innervation to chronic hypoxia in the rat carotid body.
    Matsuda H; Kusakabe T; Hayashida Y; Powell FL; Ellisman MH; Kawakami T; Takenaka T
    Adv Exp Med Biol; 2000; 475():623-30. PubMed ID: 10849702
    [No Abstract]   [Full Text] [Related]  

  • 7. Changes in the peptidergic innervation in the carotid body of rats chronically exposed to hypercapnic hypoxia: an effect of arterial CO2 tension.
    Kusakabe T; Hirakawa H; Matsuda H; Yamamoto Y; Nagai T; Kawakami T; Takenaka T; Hayashida Y
    Histol Histopathol; 2002 Jan; 17(1):21-9. PubMed ID: 11813872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptidergic innervation in the rat carotid body after 2, 4, and 8 weeks of hypocapnic hypoxic exposure.
    Kusakabe T; Hirakawa H; Matsuda H; Kawakami T; Takenaka T; Hayashida Y
    Histol Histopathol; 2003 Apr; 18(2):409-18. PubMed ID: 12647791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxic adaptation of the rat carotid body.
    Kusakabe T; Matsuda H; Hayashida Y
    Histol Histopathol; 2005 Jul; 20(3):987-97. PubMed ID: 15944949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO2 : role of carotid body CO2.
    Smith CA; Blain GM; Henderson KS; Dempsey JA
    J Physiol; 2015 Sep; 593(18):4225-43. PubMed ID: 26171601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different effects of prolonged isocapnic hypoxia on the carotid body and the glomus cells in the wall of the common carotid artery of the chicken.
    Kameda Y; Miura M; Hayashida Y
    Brain Res; 1998 Sep; 805(1-2):191-206. PubMed ID: 9733964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptidergic innervation of arterial chemoreceptors.
    Kummer W; Gibbins IL; Heym C
    Arch Histol Cytol; 1989; 52 Suppl():361-4. PubMed ID: 2479403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic intermittent hypoxia increases the CO2 reserve in sleeping dogs.
    Katayama K; Smith CA; Henderson KS; Dempsey JA
    J Appl Physiol (1985); 2007 Dec; 103(6):1942-9. PubMed ID: 17932301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human cerebral arteriovenous vasoactive exchange during alterations in arterial blood gases.
    Peebles KC; Richards AM; Celi L; McGrattan K; Murrell CJ; Ainslie PN
    J Appl Physiol (1985); 2008 Oct; 105(4):1060-8. PubMed ID: 18617625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The enlarged carotid body of the chronically hypoxic and chronically hypoxic and hypercapnic rat: a morphometric analysis.
    Dhillon DP; Barer GR; Walsh M
    Q J Exp Physiol; 1984 Apr; 69(2):301-17. PubMed ID: 6729019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trophic factors in the carotid body.
    Porzionato A; Macchi V; Parenti A; De Caro R
    Int Rev Cell Mol Biol; 2008; 269():1-58. PubMed ID: 18779056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic hypoxia modulates the function and expression of melatonin receptors in the rat carotid body.
    Tjong YW; Chen Y; Liong EC; Tipoe GL; Fung ML
    J Pineal Res; 2006 Mar; 40(2):125-34. PubMed ID: 16441549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered expression of vascular endothelial growth factor and FLK-1 receptor in chronically hypoxic rat carotid body.
    Chen J; Dinger B; Jyung R; Stensaas L; Fidone S
    Adv Exp Med Biol; 2003; 536():583-91. PubMed ID: 14635716
    [No Abstract]   [Full Text] [Related]  

  • 19. Chronic hypoxia affects peripheral and central vasoactive intestinal peptide-like immunoreactivity in the rat.
    Poncet L; Denoroy L; Dalmaz Y; Péquignot JM; Jouvet M
    Neurosci Lett; 1994 Jul; 176(1):1-4. PubMed ID: 7970222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alteration in central and peripheral substance P- and neuropeptide Y-like immunoreactivity after chronic hypoxia in the rat.
    Poncet L; Denoroy L; Dalmaz Y; Pequignot JM; Jouvet M
    Brain Res; 1996 Sep; 733(1):64-72. PubMed ID: 8891249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.