These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 16683721)

  • 1. Differential expression of oxygen sensitivity in voltage-dependent K channels in inbred strains of mice.
    Otsubo T; Yamaguchi S; Okumura M; Shirahata M
    Adv Exp Med Biol; 2006; 580():209-14; discussion 351-9. PubMed ID: 16683721
    [No Abstract]   [Full Text] [Related]  

  • 2. ACh differentially modulates voltage-gated K channels in glomus cells between DBA/2J and A/J strains of mice.
    Yamaguchi S; Higashi T; Hori Y; Shirahata M
    Adv Exp Med Biol; 2003; 536():263-8. PubMed ID: 14635676
    [No Abstract]   [Full Text] [Related]  

  • 3. Voltage-dependent K channels in mouse glomus cells are modulated by acetylcholine.
    Otsubo T; Yamaguchi S; Shirahata M
    Adv Exp Med Biol; 2006; 580():319-24; discussion 351-9. PubMed ID: 16683738
    [No Abstract]   [Full Text] [Related]  

  • 4. Characterization of the Kv channels of mouse carotid body chemoreceptor cells and their role in oxygen sensing.
    Pérez-García MT; Colinas O; Miguel-Velado E; Moreno-Domínguez A; López-López JR
    J Physiol; 2004 Jun; 557(Pt 2):457-71. PubMed ID: 15034123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular strategies for studying oxygen-sensitive K+ channels.
    Buckler K; Honoré E
    Methods Enzymol; 2004; 381():233-56. PubMed ID: 15063679
    [No Abstract]   [Full Text] [Related]  

  • 6. Genetic regulation of chemoreceptor development in DBA/2J and A/J strains of mice.
    Balbir A; Okumura M; Schofield B; Coram J; Tankersley CG; Fitzgerald RS; O'Donnell CP; Shirahata M
    Adv Exp Med Biol; 2006; 580():99-104; discussion 351-9. PubMed ID: 16683704
    [No Abstract]   [Full Text] [Related]  

  • 7. Identification of an oxygen-sensitive potassium channel in neonatal rat carotid body type I cells.
    Williams BA; Buckler KJ
    Adv Exp Med Biol; 2000; 475():419-24. PubMed ID: 10849682
    [No Abstract]   [Full Text] [Related]  

  • 8. Function of NADPH oxidase and signaling by reactive oxygen species in rat carotid body type I cells.
    He L; Dinger B; Gonzalez C; Obeso A; Fidone S
    Adv Exp Med Biol; 2006; 580():155-60; discussion 351-9. PubMed ID: 16683712
    [No Abstract]   [Full Text] [Related]  

  • 9. Patch clamp study of mouse glomus cells using a whole carotid body.
    Yamaguchi S; Lande B; Kitajima T; Hori Y; Shirahata M
    Neurosci Lett; 2004 Mar; 357(2):155-7. PubMed ID: 15036598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A search for genes that may confer divergent morphology and function in the carotid body between two strains of mice.
    Balbir A; Lee H; Okumura M; Biswal S; Fitzgerald RS; Shirahata M
    Am J Physiol Lung Cell Mol Physiol; 2007 Mar; 292(3):L704-15. PubMed ID: 17098806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of voltage-gated K+ channels in human atrium.
    Bertaso F; Sharpe CC; Hendry BM; James AF
    Basic Res Cardiol; 2002 Nov; 97(6):424-33. PubMed ID: 12395204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-gated potassium+ channel expression in coronary artery smooth muscle cells of SHR and WKY.
    Hu Z; Ma A; Zhang Y; Xi Y; Fan L; Wang T; Zhang T
    Cell Biochem Biophys; 2014 Dec; 70(3):1725-31. PubMed ID: 25030407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Shaker-type potassium channels by hypoxia. Oxygen-sensitive K+ channels in PC12 cells.
    Conforti L; Millhorn DE
    Adv Exp Med Biol; 2000; 475():265-74. PubMed ID: 10849667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced sensitivity of Kv channels to hypoxia in the rabbit carotid body in heart failure: role of angiotensin II.
    Li YL; Schultz HD
    J Physiol; 2006 Aug; 575(Pt 1):215-27. PubMed ID: 16777942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic influence on carotid body structure in DBA/2J and A/J strains of mice.
    Yamaguchi S; Balbir A; Okumura M; Schofield B; Coram J; Tankersley CG; Fitzgerald RS; O'Donnell CP; Shirahata M
    Adv Exp Med Biol; 2006; 580():105-9; discussion 351-9. PubMed ID: 16683705
    [No Abstract]   [Full Text] [Related]  

  • 16. Cellular distribution of oxygen sensor candidates-oxidases, cytochromes, K+-channels--in the carotid body.
    Kummer W; Yamamoto Y
    Microsc Res Tech; 2002 Nov; 59(3):234-42. PubMed ID: 12384967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Up-regulation of the Kv3.4 potassium channel subunit in early stages of Alzheimer's disease.
    Angulo E; Noé V; Casadó V; Mallol J; Gomez-Isla T; Lluis C; Ferrer I; Ciudad CJ; Franco R
    J Neurochem; 2004 Nov; 91(3):547-57. PubMed ID: 15485486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low glucose-sensing cells in the carotid body.
    Pardal R; López-Barneo J
    Nat Neurosci; 2002 Mar; 5(3):197-8. PubMed ID: 11850631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of tandem P domain K+ channel, TREK-1, in the rat carotid body.
    Yamamoto Y; Taniguchi K
    J Histochem Cytochem; 2006 Apr; 54(4):467-72. PubMed ID: 16344329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-gated and two-pore-domain potassium channels in murine spiral ganglion neurons.
    Chen WC; Davis RL
    Hear Res; 2006 Dec; 222(1-2):89-99. PubMed ID: 17079103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.