These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 1668390)

  • 1. The role of postsynaptic calcium in the induction of long-term potentiation.
    Malenka RC
    Mol Neurobiol; 1991; 5(2-4):289-95. PubMed ID: 1668390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct expressions for synaptic potentiation induced by calcium through voltage-gated calcium and N-methyl-D-aspartate receptor channels in the hippocampal CA1 region.
    Chen HX; Hanse E; Pananceau M; Gustafsson B
    Neuroscience; 1998 Sep; 86(2):415-22. PubMed ID: 9881856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two components of long-term potentiation induced by different patterns of afferent activation.
    Grover LM; Teyler TJ
    Nature; 1990 Oct; 347(6292):477-9. PubMed ID: 1977084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium sensor regulation of the CaV2.1 Ca2+ channel contributes to long-term potentiation and spatial learning.
    Nanou E; Scheuer T; Catterall WA
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):13209-13214. PubMed ID: 27799552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurophysiological analysis of long-term potentiation in mammalian brain.
    Voronin L; Byzov A; Kleschevnikov A; Kozhemyakin M; Kuhnt U; Volgushev M
    Behav Brain Res; 1995 Jan; 66(1-2):45-52. PubMed ID: 7755898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LTP induction dependent on activation of Ni2+-sensitive voltage-gated calcium channels, but not NMDA receptors, in the rat dentate gyrus in vitro.
    Wang Y; Rowan MJ; Anwyl R
    J Neurophysiol; 1997 Nov; 78(5):2574-81. PubMed ID: 9356407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steroid pregnenolone sulfate enhances NMDA-receptor-independent long-term potentiation at hippocampal CA1 synapses: role for L-type calcium channels and sigma-receptors.
    Sabeti J; Nelson TE; Purdy RH; Gruol DL
    Hippocampus; 2007; 17(5):349-69. PubMed ID: 17330865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus.
    Bashir ZI; Alford S; Davies SN; Randall AD; Collingridge GL
    Nature; 1991 Jan; 349(6305):156-8. PubMed ID: 1846031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus.
    Malenka RC
    Neuron; 1991 Jan; 6(1):53-60. PubMed ID: 1670922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes.
    Holmes WR; Levy WB
    J Neurophysiol; 1990 May; 63(5):1148-68. PubMed ID: 2162921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic plasticity in the hippocampal slice: functional consequences.
    Teyler TJ; Cavus I; Coussens C
    J Neurosci Methods; 1995 Jun; 59(1):11-7. PubMed ID: 7475240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMDA application potentiates synaptic transmission in the hippocampus.
    Kauer JA; Malenka RC; Nicoll RA
    Nature; 1988 Jul; 334(6179):250-2. PubMed ID: 2840582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examination of TEA-induced synaptic enhancement in area CA1 of the hippocampus: the role of voltage-dependent Ca2+ channels in the induction of LTP.
    Huang YY; Malenka RC
    J Neurosci; 1993 Feb; 13(2):568-76. PubMed ID: 8381168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory.
    Moosmang S; Haider N; Klugbauer N; Adelsberger H; Langwieser N; Müller J; Stiess M; Marais E; Schulla V; Lacinova L; Goebbels S; Nave KA; Storm DR; Hofmann F; Kleppisch T
    J Neurosci; 2005 Oct; 25(43):9883-92. PubMed ID: 16251435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation.
    Schiller J; Schiller Y; Clapham DE
    Nat Neurosci; 1998 Jun; 1(2):114-8. PubMed ID: 10195125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of NMDA receptor-mediated activity in dendrites of hippocampal CA1 pyramidal neurons.
    Pongrácz F; Poolos NP; Kocsis JD; Shepherd GM
    J Neurophysiol; 1992 Dec; 68(6):2248-59. PubMed ID: 1337105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the anoxia-induced long-term synaptic potentiation in area CA1 of the rat hippocampus.
    Hsu KS; Huang CC
    Br J Pharmacol; 1997 Oct; 122(4):671-81. PubMed ID: 9375963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold.
    Cormier RJ; Greenwood AC; Connor JA
    J Neurophysiol; 2001 Jan; 85(1):399-406. PubMed ID: 11152740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of calcium-calmodulin kinase II in three forms of synaptic plasticity.
    Stevens CF; Tonegawa S; Wang Y
    Curr Biol; 1994 Aug; 4(8):687-93. PubMed ID: 7953554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facilitation of hippocampal long-term potentiation and reactivation of latent HIV-1 via AMPK activation: Common mechanism of action linking learning, memory, and the potential eradication of HIV-1.
    Finley J
    Med Hypotheses; 2018 Jul; 116():61-73. PubMed ID: 29857913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.