BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 16684109)

  • 1. Involvement of quorum sensing and RpoS in rice seedling blight caused by Burkholderia plantarii.
    Solis R; Bertani I; Degrassi G; Devescovi G; Venturi V
    FEMS Microbiol Lett; 2006 Jun; 259(1):106-12. PubMed ID: 16684109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of a quorum-sensing-regulated lipase secreted by a clinical isolate of Burkholderia glumae in severe disease symptoms in rice.
    Devescovi G; Bigirimana J; Degrassi G; Cabrio L; LiPuma JJ; Kim J; Hwang I; Venturi V
    Appl Environ Microbiol; 2007 Aug; 73(15):4950-8. PubMed ID: 17557855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of universal stress protein genes by quorum sensing and RpoS in Burkholderia glumae.
    Kim H; Goo E; Kang Y; Kim J; Hwang I
    J Bacteriol; 2012 Mar; 194(5):982-92. PubMed ID: 22178971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the comparative genome of rice pathogen
    Mannaa M; Lee D; Lee HH; Han G; Kang M; Kim TJ; Park J; Seo YS
    Front Plant Sci; 2024; 15():1416253. PubMed ID: 38845849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The quorum sensing-dependent gene katG of Burkholderia glumae is important for protection from visible light.
    Chun H; Choi O; Goo E; Kim N; Kim H; Kang Y; Kim J; Moon JS; Hwang I
    J Bacteriol; 2009 Jul; 191(13):4152-7. PubMed ID: 19395481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adverse effects of adaptive mutation to survive static culture conditions on successful fitness of the rice pathogen Burkholderia glumae in a host.
    Kwak GY; Goo E; Jeong H; Hwang I
    PLoS One; 2020; 15(8):e0238151. PubMed ID: 32833990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional insights into the enzymatic activities of lipases from Burkholderia stagnalis and Burkholderia plantarii.
    Kataoka S; Kawamoto S; Kitagawa S; Kugimiya W; Tsumura K; Akutsu Y; Kubota T; Ishikawa K
    FEBS Lett; 2024 Jun; 598(11):1411-1421. PubMed ID: 38658173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RpoS-Regulated Genes and Phenotypes in the Phytopathogenic Bacterium
    Petrova O; Semenova E; Parfirova O; Tsers I; Gogoleva N; Gogolev Y; Nikolaichik Y; Gorshkov V
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial seed endophyte shapes disease resistance in rice.
    Matsumoto H; Fan X; Wang Y; Kusstatscher P; Duan J; Wu S; Chen S; Qiao K; Wang Y; Ma B; Zhu G; Hashidoko Y; Berg G; Cernava T; Wang M
    Nat Plants; 2021 Jan; 7(1):60-72. PubMed ID: 33398157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of Diverse N-Acyl Homoserine Lactone Signalling Molecules Among Bacteria Associated with Rice Rhizosphere.
    Viswanath G; Sekar J; Ramalingam PV
    Curr Microbiol; 2020 Nov; 77(11):3480-3491. PubMed ID: 32918570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome analysis to understand the effects of the toxoflavin and tropolone produced by phytopathogenic Burkholderia on Escherichia coli.
    Park J; Lee HH; Jung H; Seo YS
    J Microbiol; 2019 Sep; 57(9):781-794. PubMed ID: 31452043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic Features and Insights into the Taxonomy, Virulence, and Benevolence of Plant-Associated
    Mannaa M; Park I; Seo YS
    Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30598000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Wide Analysis of Type VI System Clusters and Effectors in
    Nguyen TT; Lee HH; Park I; Seo YS
    Plant Pathol J; 2018 Feb; 34(1):11-22. PubMed ID: 29422784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach.
    Betancur LA; Naranjo-Gaybor SJ; Vinchira-Villarraga DM; Moreno-Sarmiento NC; Maldonado LA; Suarez-Moreno ZR; Acosta-González A; Padilla-Gonzalez GF; Puyana M; Castellanos L; Ramos FA
    PLoS One; 2017; 12(2):e0170148. PubMed ID: 28225766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterising rhamnolipid production in Burkholderia thailandensis E264, a non-pathogenic producer.
    Funston SJ; Tsaousi K; Rudden M; Smyth TJ; Stevenson PS; Marchant R; Banat IM
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):7945-56. PubMed ID: 27147528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the Three Genes Involved in Controlling Production of a Phytotoxin Tropolone in Burkholderia plantarii.
    Miwa S; Kihira E; Yoshioka A; Nakasone K; Okamoto S; Hatano M; Igarashi M; Eguchi Y; Kato A; Ichikawa N; Sekine M; Fujita N; Kanesaki Y; Yoshikawa H; Utsumi R
    J Bacteriol; 2016 Jun; 198(11):1604-1609. PubMed ID: 27002128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional and Post-Transcriptional Modulation of SPI1 and SPI2 Expression by ppGpp, RpoS and DksA in Salmonella enterica sv Typhimurium.
    Rice CJ; Ramachandran VK; Shearer N; Thompson A
    PLoS One; 2015; 10(6):e0127523. PubMed ID: 26039089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genome analysis of rice-pathogenic Burkholderia provides insight into capacity to adapt to different environments and hosts.
    Seo YS; Lim JY; Park J; Kim S; Lee HH; Cheong H; Kim SM; Moon JS; Hwang I
    BMC Genomics; 2015 May; 16(1):349. PubMed ID: 25943361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repression of tropolone production and induction of a Burkholderia plantarii pseudo-biofilm by carot-4-en-9,10-diol, a cell-to-cell signaling disrupter produced by Trichoderma virens.
    Wang M; Hashimoto M; Hashidoko Y
    PLoS One; 2013; 8(11):e78024. PubMed ID: 24223754
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.