BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16684797)

  • 1. Long-term in vivo degradation of poly-L-lactide (PLLA) in bone.
    Walton M; Cotton NJ
    J Biomater Appl; 2007 Apr; 21(4):395-411. PubMed ID: 16684797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term tissue response to bioabsorbable poly-L-lactide and metallic screws: an experimental study.
    Pihlajamäki H; Böstman O; Tynninen O; Laitinen O
    Bone; 2006 Oct; 39(4):932-7. PubMed ID: 16750438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation and strength retention of poly-L-lactide screws in vivo. An experimental long-term study in sheep.
    Jukkala-Partio K; Pohjonen T; Laitinen O; Partio EK; Vasenius J; Toivonen T; Kinnunen J; Törmälä P; Rokkanen P
    Ann Chir Gynaecol; 2001; 90(3):219-24. PubMed ID: 11695800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly-L-lactic acid beta-tricalcium phosphate screws: a preliminary in vivo biocompatibility study.
    Magarelli N; Savastano MA; Palmieri D; Zappacosta R; Lattanzio G; Salini V; Orso CA; Guglielmi G; Colosimo C
    Int J Immunopathol Pharmacol; 2007; 20(1):207-11. PubMed ID: 17346447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Healing of subcapital femoral osteotomies fixed with self-reinforced poly-L-lactide screws: an experimental long-term study in sheep.
    Jukkala-Partio K; Laitinen O; Vasenius J; Partio EK; Toivonen T; Tervahartiala P; Kinnunen J; Rokkanen P
    Arch Orthop Trauma Surg; 2002 Jul; 122(6):360-4. PubMed ID: 12136303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyapatite/poly-L-lactide acid screws have better biocompatibility and femoral burr hole closure than does poly-L-lactide acid alone.
    Akagi H; Iwata M; Ichinohe T; Amimoto H; Hayashi Y; Kannno N; Ochi H; Fujita Y; Harada Y; Tagawa M; Hara Y
    J Biomater Appl; 2014 Feb; 28(6):954-62. PubMed ID: 23680818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmission electron microscopic visualization of the degradation and phagocytosis of a poly-L-lactide screw in cancellous bone: a long-term experimental study.
    Laitinen O; Pihlajamäki H; Sukura A; Böstman O
    J Biomed Mater Res; 2002 Jul; 61(1):33-9. PubMed ID: 12001243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term absorption of poly-L-lactic Acid interference screws.
    Barber FA; Dockery WD
    Arthroscopy; 2006 Aug; 22(8):820-6. PubMed ID: 16904577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo study on the histocompatibility and degradation behavior of biodegradable poly(trimethylene carbonate-co-D,L-lactide).
    Guo Q; Lu Z; Zhang Y; Li S; Yang J
    Acta Biochim Biophys Sin (Shanghai); 2011 Jun; 43(6):433-40. PubMed ID: 21571741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [In vivo degradation and tissue compatibility of poly-L-lactide/beta-tricalcium phosphate composite rods for internal fixation of bone fractures].
    Li X; Zou J; Zhu G; Qi X; Pu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):81-6. PubMed ID: 17333897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term study of high-strength hydroxyapatite/poly(L-lactide) composite rods for the internal fixation of bone fractures: a 2-4-year follow-up study in rabbits.
    Ishii S; Tamura J; Furukawa T; Nakamura T; Matsusue Y; Shikinami Y; Okuno M
    J Biomed Mater Res B Appl Biomater; 2003 Aug; 66(2):539-47. PubMed ID: 12861605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue response to partially in vitro predegraded poly-L-lactide implants.
    De Jong WH; Eelco Bergsma J; Robinson JE; Bos RR
    Biomaterials; 2005 May; 26(14):1781-91. PubMed ID: 15576152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resorbable materials of poly(L-lactide). VII. In vivo and in vitro degradation.
    Leenslag JW; Pennings AJ; Bos RR; Rozema FR; Boering G
    Biomaterials; 1987 Jul; 8(4):311-4. PubMed ID: 3663810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Biocompatibility evaluation of lactide--trimethylene carbonate copolymers].
    Tu S; Yang J; Chen Y; Luo X; Li S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):595-9. PubMed ID: 20649027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative histological evaluation of new tyrosine-derived polymers and poly (L-lactic acid) as a function of polymer degradation.
    Hooper KA; Macon ND; Kohn J
    J Biomed Mater Res; 1998 Sep; 41(3):443-54. PubMed ID: 9659614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation characteristics of PLLA-PGA bone fixation devices.
    Eppley BL; Reilly M
    J Craniofac Surg; 1997 Mar; 8(2):116-20. PubMed ID: 10332278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular design of aliphatic polyesters with maintained mechanical properties and a rapid, customized degradation profile.
    Malberg S; Hoglund A; Albertsson AC
    Biomacromolecules; 2011 Jun; 12(6):2382-8. PubMed ID: 21528876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxylapatite/poly(L-lactide) composites: an animal study on push-out strengths and interface histology.
    Verheyen CC; de Wijn JR; van Blitterswijk CA; de Groot K; Rozing PM
    J Biomed Mater Res; 1993 Apr; 27(4):433-44. PubMed ID: 8385142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The long-term behavior of poly-L-lactide screws in a minipig fracture model: preliminary report.
    Hasegawa Y; Sakano S; Iwase T; Warashina H
    J Biomed Mater Res; 2002; 63(6):679-85. PubMed ID: 12418010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro properties of PLLA screws and novel bioabsorbable implant with elastic nucleus to replace intervertebral disc.
    Ellä V; Kellomäki M; Törmälä P
    J Mater Sci Mater Med; 2005 Jul; 16(7):655-62. PubMed ID: 15965598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.