These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 16684798)

  • 41. Performance of the experimental resins and dental nanocomposites at varying deformation rates.
    Kumar N; Shortall A
    J Investig Clin Dent; 2014 Aug; 5(3):237-42. PubMed ID: 23766028
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis and photopolymerization of trifunctional methacrylates and their application as dental monomers.
    Chung CM; Kim MS; Kim JG; Jang DO
    J Biomed Mater Res; 2002 Dec; 62(4):622-7. PubMed ID: 12221711
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characteristics of novel dental composites containing 2,2-bis[4-(2-methoxy-3-methacryloyloxy propoxy) phenyl] propane as a base resin.
    Kim JW; Kim LU; Kim CK; Cho BH; Kim OY
    Biomacromolecules; 2006 Jan; 7(1):154-60. PubMed ID: 16398510
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vitro remineralization of artificial enamel caries with resin composites containing calcium phosphate particles.
    Alania Y; Natale LC; Nesadal D; Vilela H; Magalhães AC; Braga RR
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1542-1550. PubMed ID: 30296360
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of bioactive particles on the chemical-mechanical properties of experimental enamel resin infiltrants.
    Sfalcin RA; Correr AB; Morbidelli LR; Araújo TGF; Feitosa VP; Correr-Sobrinho L; Watson TF; Sauro S
    Clin Oral Investig; 2017 Jul; 21(6):2143-2151. PubMed ID: 27838844
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Polymerization stress development in dental composites: Effect of cavity design factor.
    Antonucci JM; Giuseppetti AA; O'Donnell JN; Schumacher GE; Skrtic D
    Materials (Basel); 2009 Mar; 2(1):169-180. PubMed ID: 26413236
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Properties of eight methacrylated beta-cyclodextrin composite formulations.
    Hussain LA; Dickens SH; Bowen RL
    Dent Mater; 2005 Mar; 21(3):210-6. PubMed ID: 15705427
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural and dynamical studies of acid-mediated conversion in amorphous-calcium-phosphate based dental composites.
    Zhang F; Allen AJ; Levine LE; Vaudin MD; Skrtic D; Antonucci JM; Hoffman KM; Giuseppetti AA; Ilavsky J
    Dent Mater; 2014 Oct; 30(10):1113-25. PubMed ID: 25082155
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Network structure of Bis-GMA- and UDMA-based resin systems.
    Floyd CJ; Dickens SH
    Dent Mater; 2006 Dec; 22(12):1143-9. PubMed ID: 16376422
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis, characterization and evaluation of a fluorinated resin monomer with low water sorption.
    Liu X; Wang Z; Zhao C; Bu W; Zhang Y; Na H
    J Mech Behav Biomed Mater; 2018 Jan; 77():446-454. PubMed ID: 29028596
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Monomers used in resin composites: degree of conversion, mechanical properties and water sorption/solubility.
    Gajewski VE; Pfeifer CS; Fróes-Salgado NR; Boaro LC; Braga RR
    Braz Dent J; 2012; 23(5):508-14. PubMed ID: 23306226
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of brushite particles synthesized in the presence of acidic monomers for dental applications.
    Chiari MDS; Rodrigues MC; Pinto MFC; Vieira DN; Vichi FM; Vega O; Chrzanowski W; Nagaoka N; Braga RR
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111178. PubMed ID: 32806326
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of a liquid-crystalline resin monomer with the property of low shrinkage polymerization.
    Liu W; Chen S; Liu Y; Ma Y; Wang N; Zhang Z; Yang Y
    Dent Mater J; 2013; 32(4):550-6. PubMed ID: 23903635
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Replacing HEMA with alternative dimethacrylates in dental adhesive systems: evaluation of polymerization kinetics and physicochemical properties.
    Münchow EA; Zanchi CH; Ogliari FA; Silva MG; de Oliveira IR; Piva E
    J Adhes Dent; 2014 Jun; 16(3):221-8. PubMed ID: 24683593
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Amorphous calcium phosphate composites with improved mechanical properties.
    O'Donnell JN; Antonucci JM; Skrtic D
    J Bioact Compat Polym; 2006; 21(3):169-184. PubMed ID: 18688290
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Elution from light-cured dental composites: comparison of trimethacrylate and dimethacrylate as base monomers.
    Kim JG; Chung CM
    J Biomed Mater Res B Appl Biomater; 2005 Feb; 72(2):328-33. PubMed ID: 15529333
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protein-repellent nanocomposite with rechargeable calcium and phosphate for long-term ion release.
    Al-Dulaijan YA; Weir MD; Melo MAS; Sun J; Oates TW; Zhang K; Xu HHK
    Dent Mater; 2018 Dec; 34(12):1735-1747. PubMed ID: 30269864
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selected physicochemical properties of the experimental endodontic sealer.
    Johns JI; O'Donnell JN; Skrtic D
    J Mater Sci Mater Med; 2010 Feb; 21(2):797-805. PubMed ID: 19768397
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure-Composition-Property Relationships in Polymeric Amorphous Calcium Phosphate-Based Dental Composites.
    O'Donnell JN; Schumacher GE; Antonucci JM; Skrtic D
    Materials (Basel); 2009; 2(4):1929-1959. PubMed ID: 21966588
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Contraction stress determinants in dimethacrylate composites.
    Gonçalves F; Pfeifer CS; Ferracane JL; Braga RR
    J Dent Res; 2008 Apr; 87(4):367-71. PubMed ID: 18362321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.