These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16684885)

  • 1. siRNA in human cells selectively localizes to target RNA sites.
    Berezhna SY; Supekova L; Supek F; Schultz PG; Deniz AA
    Proc Natl Acad Sci U S A; 2006 May; 103(20):7682-7. PubMed ID: 16684885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional and intracellular localization properties of U6 promoter-expressed siRNAs, shRNAs, and chimeric VA1 shRNAs in mammalian cells.
    Lee NS; Kim DH; Alluin J; Robbins M; Gu S; Li H; Kim J; Salvaterra PM; Rossi JJ
    RNA; 2008 Sep; 14(9):1823-33. PubMed ID: 18697923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific and potent RNAi in the nucleus of human cells.
    Robb GB; Brown KM; Khurana J; Rana TM
    Nat Struct Mol Biol; 2005 Feb; 12(2):133-7. PubMed ID: 15643423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strand antagonism in RNAi: an explanation of differences in potency between intracellularly expressed siRNA and shRNA.
    Jin X; Sun T; Zhao C; Zheng Y; Zhang Y; Cai W; He Q; Taira K; Zhang L; Zhou D
    Nucleic Acids Res; 2012 Feb; 40(4):1797-806. PubMed ID: 22039150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positional effects and strand preference of RNA interference against hepatitis C virus target sequences.
    Smith RM; Smolic R; Volarevic M; Wu GY
    J Viral Hepat; 2007 Mar; 14(3):194-212. PubMed ID: 17305886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3'-ends of siRNAs.
    Hamada M; Ohtsuka T; Kawaida R; Koizumi M; Morita K; Furukawa H; Imanishi T; Miyagishi M; Taira K
    Antisense Nucleic Acid Drug Dev; 2002 Oct; 12(5):301-9. PubMed ID: 12477280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of allele discrimination by introduction of nucleotide mismatches into siRNA in allele-specific gene silencing by RNAi.
    Ohnishi Y; Tamura Y; Yoshida M; Tokunaga K; Hohjoh H
    PLoS One; 2008 May; 3(5):e2248. PubMed ID: 18493311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytoplasmic and nuclear retained DMPK mRNAs are targets for RNA interference in myotonic dystrophy cells.
    Langlois MA; Boniface C; Wang G; Alluin J; Salvaterra PM; Puymirat J; Rossi JJ; Lee NS
    J Biol Chem; 2005 Apr; 280(17):16949-54. PubMed ID: 15722335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi.
    Martinez J; Patkaniowska A; Urlaub H; Lührmann R; Tuschl T
    Cell; 2002 Sep; 110(5):563-74. PubMed ID: 12230974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Tetrahymena argonaute-binding protein Giw1p directs a mature argonaute-siRNA complex to the nucleus.
    Noto T; Kurth HM; Kataoka K; Aronica L; DeSouza LV; Siu KW; Pearlman RE; Gorovsky MA; Mochizuki K
    Cell; 2010 Mar; 140(5):692-703. PubMed ID: 20211138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of HCV subgenomic replicons by siRNAs derived from plasmids with opposing U6 and H1 promoters.
    Korf M; Meyer A; Jarczak D; Beger C; Manns MP; Krüger M
    J Viral Hepat; 2007 Feb; 14(2):122-32. PubMed ID: 17244252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel siRNA validation system for functional screening and identification of effective RNAi probes in mammalian cells.
    Hung CF; Lu KC; Cheng TL; Wu RH; Huang LY; Teng CF; Chang WT
    Biochem Biophys Res Commun; 2006 Aug; 346(3):707-20. PubMed ID: 16793020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. siRNA function in RNAi: a chemical modification analysis.
    Chiu YL; Rana TM
    RNA; 2003 Sep; 9(9):1034-48. PubMed ID: 12923253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High doses of siRNAs induce eri-1 and adar-1 gene expression and reduce the efficiency of RNA interference in the mouse.
    Hong J; Qian Z; Shen S; Min T; Tan C; Xu J; Zhao Y; Huang W
    Biochem J; 2005 Sep; 390(Pt 3):675-9. PubMed ID: 16004606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct evidence of nuclear Argonaute distribution during transcriptional silencing links the actin cytoskeleton to nuclear RNAi machinery in human cells.
    Ahlenstiel CL; Lim HG; Cooper DA; Ishida T; Kelleher AD; Suzuki K
    Nucleic Acids Res; 2012 Feb; 40(4):1579-95. PubMed ID: 22064859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling RNA interference in mammalian cells.
    Cuccato G; Polynikis A; Siciliano V; Graziano M; di Bernardo M; di Bernardo D
    BMC Syst Biol; 2011 Jan; 5():19. PubMed ID: 21272352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potent RNAi by short RNA triggers.
    Chu CY; Rana TM
    RNA; 2008 Sep; 14(9):1714-9. PubMed ID: 18658119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes.
    Matranga C; Tomari Y; Shin C; Bartel DP; Zamore PD
    Cell; 2005 Nov; 123(4):607-20. PubMed ID: 16271386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells.
    Kawasaki H; Taira K
    Nucleic Acids Res; 2003 Jan; 31(2):700-7. PubMed ID: 12527779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silencing of hepatitis A virus infection by small interfering RNAs.
    Kusov Y; Kanda T; Palmenberg A; Sgro JY; Gauss-Müller V
    J Virol; 2006 Jun; 80(11):5599-610. PubMed ID: 16699041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.