These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 16684926)

  • 1. Podocytes are sensitive to fluid shear stress in vitro.
    Friedrich C; Endlich N; Kriz W; Endlich K
    Am J Physiol Renal Physiol; 2006 Oct; 291(4):F856-65. PubMed ID: 16684926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of differential gene expression in stretched podocytes: osteopontin enhances adaptation of podocytes to mechanical stress.
    Endlich N; Sunohara M; Nietfeld W; Wolski EW; Schiwek D; Kränzlin B; Gretz N; Kriz W; Eickhoff H; Endlich K
    FASEB J; 2002 Nov; 16(13):1850-2. PubMed ID: 12354696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating alpha-actinin-4 dynamics in podocytes.
    Michaud JL; Hosseini-Abardeh M; Farah K; Kennedy CR
    Cell Motil Cytoskeleton; 2009 Mar; 66(3):166-78. PubMed ID: 19206166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. p38 MAP kinase mediates mechanically induced COX-2 and PG EP4 receptor expression in podocytes: implications for the actin cytoskeleton.
    Martineau LC; McVeigh LI; Jasmin BJ; Kennedy CR
    Am J Physiol Renal Physiol; 2004 Apr; 286(4):F693-701. PubMed ID: 14665434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical strain increases SPARC levels in podocytes: implications for glomerulosclerosis.
    Durvasula RV; Shankland SJ
    Am J Physiol Renal Physiol; 2005 Sep; 289(3):F577-84. PubMed ID: 16093428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid shear stress induces less calcium response in a single primary osteocyte than in a single osteoblast: implication of different focal adhesion formation.
    Kamioka H; Sugawara Y; Murshid SA; Ishihara Y; Honjo T; Takano-Yamamoto T
    J Bone Miner Res; 2006 Jul; 21(7):1012-21. PubMed ID: 16813522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AlphaV-integrins mediate the mechanoprotective action of osteopontin in podocytes.
    Schordan S; Schordan E; Endlich K; Endlich N
    Am J Physiol Renal Physiol; 2011 Jan; 300(1):F119-32. PubMed ID: 21048023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions.
    Pavalko FM; Chen NX; Turner CH; Burr DB; Atkinson S; Hsieh YF; Qiu J; Duncan RL
    Am J Physiol; 1998 Dec; 275(6 Pt 1):C1591-601. PubMed ID: 9843721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The challenge and response of podocytes to glomerular hypertension.
    Endlich N; Endlich K
    Semin Nephrol; 2012 Jul; 32(4):327-41. PubMed ID: 22958487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical forces and TGFbeta1 reduce podocyte adhesion through alpha3beta1 integrin downregulation.
    Dessapt C; Baradez MO; Hayward A; Dei Cas A; Thomas SM; Viberti G; Gnudi L
    Nephrol Dial Transplant; 2009 Sep; 24(9):2645-55. PubMed ID: 19420102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TGF-beta concentration specifies differential signaling profiles of growth arrest/differentiation and apoptosis in podocytes.
    Wu DT; Bitzer M; Ju W; Mundel P; Böttinger EP
    J Am Soc Nephrol; 2005 Nov; 16(11):3211-21. PubMed ID: 16207831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical stretch and prostaglandin E2 modulate critical signaling pathways in mouse podocytes.
    Faour WH; Thibodeau JF; Kennedy CR
    Cell Signal; 2010 Aug; 22(8):1222-30. PubMed ID: 20362052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of LIMK2 RNAi on reorganization of the actin cytoskeleton in osteoblasts induced by fluid shear stress.
    Fu Q; Wu C; Shen Y; Zheng S; Chen R
    J Biomech; 2008 Nov; 41(15):3225-8. PubMed ID: 18805530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton.
    Galbraith CG; Skalak R; Chien S
    Cell Motil Cytoskeleton; 1998; 40(4):317-30. PubMed ID: 9712262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stretch, tension and adhesion - adaptive mechanisms of the actin cytoskeleton in podocytes.
    Endlich N; Endlich K
    Eur J Cell Biol; 2006 Apr; 85(3-4):229-34. PubMed ID: 16546566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permanent genetic tagging of podocytes: fate of injured podocytes in a mouse model of glomerular sclerosis.
    Asano T; Niimura F; Pastan I; Fogo AB; Ichikawa I; Matsusaka T
    J Am Soc Nephrol; 2005 Aug; 16(8):2257-62. PubMed ID: 15987751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology and migration of podocytes are affected by CD151 levels.
    Blumenthal A; Giebel J; Ummanni R; Schlüter R; Endlich K; Endlich N
    Am J Physiol Renal Physiol; 2012 May; 302(10):F1265-77. PubMed ID: 22338088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stressed podocytes-mechanical forces, sensors, signaling and response.
    Endlich K; Kliewe F; Endlich N
    Pflugers Arch; 2017 Aug; 469(7-8):937-949. PubMed ID: 28687864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological responses of single endothelial cells exposed to physiological levels of fluid shear stress.
    Masuda M; Fujiwara K
    Front Med Biol Eng; 1993; 5(2):79-87. PubMed ID: 8241033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The homophilic adhesion molecule sidekick-1 contributes to augmented podocyte aggregation in HIV-associated nephropathy.
    Kaufman L; Yang G; Hayashi K; Ashby JR; Huang L; Ross MJ; Klotman ME; Klotman PE
    FASEB J; 2007 May; 21(7):1367-75. PubMed ID: 17307840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.