These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 16684993)

  • 41. Gene regulation in prokaryotes by subcellular relocalization of transcription factors.
    Böhm A; Boos W
    Curr Opin Microbiol; 2004 Apr; 7(2):151-6. PubMed ID: 15063852
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The solution structure of Lac repressor headpiece 62 complexed to a symmetrical lac operator.
    Spronk CA; Bonvin AM; Radha PK; Melacini G; Boelens R; Kaptein R
    Structure; 1999 Dec; 7(12):1483-92. PubMed ID: 10647179
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cellular control models with linked positive and negative feedback and delays. I. The models.
    Mahaffy JM
    J Theor Biol; 1984 Jan; 106(2):89-102. PubMed ID: 6369005
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors.
    Österlund T; Bordel S; Nielsen J
    Integr Biol (Camb); 2015 May; 7(5):560-8. PubMed ID: 25855217
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Probing transcription factor dynamics at the single-molecule level in a living cell.
    Elf J; Li GW; Xie XS
    Science; 2007 May; 316(5828):1191-4. PubMed ID: 17525339
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Construction of a genetic toggle switch in Escherichia coli.
    Gardner TS; Cantor CR; Collins JJ
    Nature; 2000 Jan; 403(6767):339-42. PubMed ID: 10659857
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulation of transcription of genes required for fatty acid transport and unsaturated fatty acid biosynthesis in Escherichia coli by FadR.
    DiRusso CC; Metzger AK; Heimert TL
    Mol Microbiol; 1993 Jan; 7(2):311-22. PubMed ID: 8446033
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Non-equilibrium repressor binding kinetics link DNA damage dose to transcriptional timing within the SOS gene network.
    Culyba MJ; Kubiak JM; Mo CY; Goulian M; Kohli RM
    PLoS Genet; 2018 Jun; 14(6):e1007405. PubMed ID: 29856734
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Leucine-responsive regulatory protein plays dual roles as both an activator and a repressor of the Escherichia coli pap fimbrial operon.
    van der Woude MW; Kaltenbach LS; Low DA
    Mol Microbiol; 1995 Jul; 17(2):303-12. PubMed ID: 7494479
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Feedback loops interlocked at competitive binding sites amplify and facilitate genetic oscillations.
    Uriu K; Tei H
    J Theor Biol; 2017 Sep; 428():56-64. PubMed ID: 28625476
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcription of rpoH, encoding the Escherichia coli heat-shock regulator sigma32, is negatively controlled by the cAMP-CRP/CytR nucleoprotein complex.
    Kallipolitis BH; Valentin-Hansen P
    Mol Microbiol; 1998 Aug; 29(4):1091-9. PubMed ID: 9767576
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ab initio thermodynamic modeling of distal multisite transcription regulation.
    Saiz L; Vilar JM
    Nucleic Acids Res; 2008 Feb; 36(3):726-31. PubMed ID: 18056082
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on sigma 54 and modulated by positive and negative feedback mechanisms.
    Weiner L; Brissette JL; Model P
    Genes Dev; 1991 Oct; 5(10):1912-23. PubMed ID: 1717346
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Limit cycles in models of circular gene networks regulated by negative feedback loops.
    Likhoshvai VA; Golubyatnikov VP; Khlebodarova TM
    BMC Bioinformatics; 2020 Sep; 21(Suppl 11):255. PubMed ID: 32921311
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach.
    Ma HW; Buer J; Zeng AP
    BMC Bioinformatics; 2004 Dec; 5():199. PubMed ID: 15603590
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Positive and Negative Control of Enhancer-Promoter Interactions by Other DNA Loops Generates Specificity and Tunability.
    Hao N; Shearwin KE; Dodd IB
    Cell Rep; 2019 Feb; 26(9):2419-2433.e3. PubMed ID: 30811991
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The redox-regulated SoxR protein acts from a single DNA site as a repressor and an allosteric activator.
    Hidalgo E; Leautaud V; Demple B
    EMBO J; 1998 May; 17(9):2629-36. PubMed ID: 9564045
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Theoretical investigation of a genetic switch for metabolic adaptation.
    Laxhuber KS; Morrison MJ; Chure G; Belliveau NM; Strandkvist C; Naughton KL; Phillips R
    PLoS One; 2020; 15(5):e0226453. PubMed ID: 32379825
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Building a complete image of genome regulation in the model organism Escherichia coli.
    Ishihama A
    J Gen Appl Microbiol; 2018 Jan; 63(6):311-324. PubMed ID: 28904250
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rok (YkuW) regulates genetic competence in Bacillus subtilis by directly repressing comK.
    Hoa TT; Tortosa P; Albano M; Dubnau D
    Mol Microbiol; 2002 Jan; 43(1):15-26. PubMed ID: 11849533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.