These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 16685881)

  • 1. Prospective head motion compensation for MRI by updating the gradients and radio frequency during data acquisition.
    Dold C; Zaitsev M; Speck O; Firle EA; Hennig J; Sakas G
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):482-9. PubMed ID: 16685881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advantages and limitations of prospective head motion compensation for MRI using an optical motion tracking device.
    Dold C; Zaitsev M; Speck O; Firle EA; Hennig J; Sakas G
    Acad Radiol; 2006 Sep; 13(9):1093-103. PubMed ID: 16935721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospective correction of affine motion for arbitrary MR sequences on a clinical scanner.
    Nehrke K; Börnert P
    Magn Reson Med; 2005 Nov; 54(5):1130-8. PubMed ID: 16200564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Navigator accuracy requirements for prospective motion correction.
    Maclaren J; Speck O; Stucht D; Schulze P; Hennig J; Zaitsev M
    Magn Reson Med; 2010 Jan; 63(1):162-70. PubMed ID: 19918892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prospective head-movement correction for high-resolution MRI using an in-bore optical tracking system.
    Qin L; van Gelderen P; Derbyshire JA; Jin F; Lee J; de Zwart JA; Tao Y; Duyn JH
    Magn Reson Med; 2009 Oct; 62(4):924-34. PubMed ID: 19526503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospective head motion correction using FID-guided on-demand image navigators.
    Waszak M; Falkovskiy P; Hilbert T; Bonnier G; Maréchal B; Meuli R; Gruetter R; Kober T; Krueger G
    Magn Reson Med; 2017 Jul; 78(1):193-203. PubMed ID: 27529516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The design and implementation of a motion correction scheme for neurological PET.
    Bloomfield PM; Spinks TJ; Reed J; Schnorr L; Westrip AM; Livieratos L; Fulton R; Jones T
    Phys Med Biol; 2003 Apr; 48(8):959-78. PubMed ID: 12741495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospective motion correction of 3D echo-planar imaging data for functional MRI using optical tracking.
    Todd N; Josephs O; Callaghan MF; Lutti A; Weiskopf N
    Neuroimage; 2015 Jun; 113():1-12. PubMed ID: 25783205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospective multiaxial motion correction for fMRI.
    Ward HA; Riederer SJ; Grimm RC; Ehman RL; Felmlee JP; Jack CR
    Magn Reson Med; 2000 Mar; 43(3):459-69. PubMed ID: 10725890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-encoded marker for optical prospective head motion correction in MRI.
    Forman C; Aksoy M; Hornegger J; Bammer R
    Med Image Anal; 2011 Oct; 15(5):708-19. PubMed ID: 21708477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time rigid body motion correction and shimming using cloverleaf navigators.
    van der Kouwe AJ; Benner T; Dale AM
    Magn Reson Med; 2006 Nov; 56(5):1019-32. PubMed ID: 17029223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collapsed fat navigators for brain 3D rigid body motion.
    Engström M; Mårtensson M; Avventi E; Norbeck O; Skare S
    Magn Reson Imaging; 2015 Oct; 33(8):984-91. PubMed ID: 26117701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correcting slice selectivity in hard pulse sequences.
    Grodzki DM; Jakob PM; Heismann B
    J Magn Reson; 2012 Jan; 214(1):61-7. PubMed ID: 22047992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous acquisition of image and navigator slices using CAIPIRINHA for 4D MRI.
    Celicanin Z; Bieri O; Preiswerk F; Cattin P; Scheffler K; Santini F
    Magn Reson Med; 2015 Feb; 73(2):669-76. PubMed ID: 24604250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of a 2D fat navigator for prospective image domain correction of nodding motion in brain MRI.
    Skare S; Hartwig A; Mårtensson M; Avventi E; Engström M
    Magn Reson Med; 2015 Mar; 73(3):1110-9. PubMed ID: 24733744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of three-dimensional wavelet encoding spectroscopic imaging: in vivo application and method comparison.
    Young R; Serrai H
    Magn Reson Med; 2009 Jan; 61(1):6-15. PubMed ID: 19097215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional MRI with an undersampled spherical shells trajectory.
    Shu Y; Riederer SJ; Bernstein MA
    Magn Reson Med; 2006 Sep; 56(3):553-62. PubMed ID: 16894580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerating fully phase-encoded MRI near metal using multiband radiofrequency excitation.
    Artz NS; Wiens CN; Smith MR; Hernando D; Samsonov A; Reeder SB
    Magn Reson Med; 2017 Mar; 77(3):1223-1230. PubMed ID: 27052204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spherical navigator registration using harmonic analysis for prospective motion correction.
    Wyatt CL; Ari N; Kraft RA
    Inf Process Med Imaging; 2005; 19():738-49. PubMed ID: 17354740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Registering spherical navigators with spherical harmonic expansions to measure three-dimensional rotations in magnetic resonance imaging.
    Costa AF; Yen YF; Drangova M
    Magn Reson Imaging; 2010 Feb; 28(2):185-94. PubMed ID: 19755205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.