BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 16686013)

  • 41. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Determination of Poisson's ratio of articular cartilage by indentation using different-sized indenters.
    Jin H; Lewis JL
    J Biomech Eng; 2004 Apr; 126(2):138-45. PubMed ID: 15179843
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultrasound elastomicroscopy using water jet and osmosis loading: potentials for assessment for articular cartilage.
    Zheng YP; Lu MH; Wang Q
    Ultrasonics; 2006 Dec; 44 Suppl 1():e203-9. PubMed ID: 16842834
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Elastic model for crimped collagen fibrils.
    Freed AD; Doehring TC
    J Biomech Eng; 2005 Aug; 127(4):587-93. PubMed ID: 16121528
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study.
    Fagan MJ; Julian S; Siddall DJ; Mohsen AM
    Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dependence of mechanical behavior of the murine tail disc on regional material properties: a parametric finite element study.
    Hsieh AH; Wagner DR; Cheng LY; Lotz JC
    J Biomech Eng; 2005 Dec; 127(7):1158-67. PubMed ID: 16502658
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vivo characterization of the mechanical properties of human skin derived from MRI and indentation techniques.
    Tran HV; Charleux F; Rachik M; Ehrlacher A; Ho Ba Tho MC
    Comput Methods Biomech Biomed Engin; 2007 Dec; 10(6):401-7. PubMed ID: 17891674
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A method for a mechanical characterisation of human gluteal tissue.
    Then C; Menger J; Benderoth G; Alizadeh M; Vogl TJ; Hübner F; Silber G
    Technol Health Care; 2007; 15(6):385-98. PubMed ID: 18057562
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography.
    Sinkus R; Tanter M; Catheline S; Lorenzen J; Kuhl C; Sondermann E; Fink M
    Magn Reson Med; 2005 Feb; 53(2):372-87. PubMed ID: 15678538
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamic finite element modeling of poroviscoelastic soft tissue.
    Yang Z; Smolinski P
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):7-16. PubMed ID: 16880152
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A simple viscoelastic model for soft tissues in the frequency range 6-20 MHz.
    Yang X; Church CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Aug; 53(8):1404-11. PubMed ID: 16921892
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Viscoelastic parameter estimation based on spectral analysis.
    Eskandari H; Salcudean SE; Rohling R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1611-25. PubMed ID: 18986951
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A new soft-tissue indentation model for estimating circular indenter 'force-displacement' characteristics.
    Al-ja'afreh T; Zweiri Y; Seneviratne L; Althoefer K
    Proc Inst Mech Eng H; 2008 Jul; 222(5):805-15. PubMed ID: 18756697
    [TBL] [Abstract][Full Text] [Related]  

  • 55. On the possibility of non-invasive multilayer temperature estimation using soft-computing methods.
    Teixeira CA; Pereira WC; Ruano AE; Ruano MG
    Ultrasonics; 2010 Jan; 50(1):32-43. PubMed ID: 19695653
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Three-dimensional finite element analysis of the foot during standing--a material sensitivity study.
    Cheung JT; Zhang M; Leung AK; Fan YB
    J Biomech; 2005 May; 38(5):1045-54. PubMed ID: 15797586
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simultaneous determination of the nonlinear-elastic properties of skin and subcutaneous tissue in unconfined compression tests.
    Wu JZ; Cutlip RG; Andrew ME; Dong RG
    Skin Res Technol; 2007 Feb; 13(1):34-42. PubMed ID: 17250530
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrical conductivity images of biological tissue phantoms in MREIT.
    Oh SH; Lee BI; Woo EJ; Lee SY; Kim TS; Kwon O; Seo JK
    Physiol Meas; 2005 Apr; 26(2):S279-88. PubMed ID: 15798241
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A biophysical model of brain deformation to simulate and analyze longitudinal MRIs of patients with Alzheimer's disease.
    Khanal B; Lorenzi M; Ayache N; Pennec X
    Neuroimage; 2016 Jul; 134():35-52. PubMed ID: 27039699
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A quasi-linear, viscoelastic, structural model of the plantar soft tissue with frequency-sensitive damping properties.
    Ledoux WR; Meaney DF; Hillstrom HJ
    J Biomech Eng; 2004 Dec; 126(6):831-7. PubMed ID: 15796342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.