These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 1668610)

  • 1. Hydroxyl radical formation by sickle erythrocyte membranes: role of pathologic iron deposits and cytoplasmic reducing agents.
    Repka T; Hebbel RP
    Blood; 1991 Nov; 78(10):2753-8. PubMed ID: 1668610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonheme iron in sickle erythrocyte membranes: association with phospholipids and potential role in lipid peroxidation.
    Kuross SA; Hebbel RP
    Blood; 1988 Oct; 72(4):1278-85. PubMed ID: 3167208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of oxidative reactions of hemoglobin in the design of blood substitutes: role of the ascorbate-glutathione antioxidant system.
    Simoni J; Villanueva-Meyer J; Simoni G; Moeller JF; Wesson DE
    Artif Organs; 2009 Feb; 33(2):115-26. PubMed ID: 19178455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased susceptibility of the sickle cell membrane Ca2+ + Mg(2+)-ATPase to t-butylhydroperoxide: protective effects of ascorbate and desferal.
    Moore RB; Hulgan TM; Green JW; Jenkins LD
    Blood; 1992 Mar; 79(5):1334-41. PubMed ID: 1531618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous oxygen radical generation by sickle erythrocytes.
    Hebbel RP; Eaton JW; Balasingam M; Steinberg MH
    J Clin Invest; 1982 Dec; 70(6):1253-9. PubMed ID: 6294138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deferiprone (L1) chelates pathologic iron deposits from membranes of intact thalassemic and sickle red blood cells both in vitro and in vivo.
    Shalev O; Repka T; Goldfarb A; Grinberg L; Abrahamov A; Olivieri NF; Rachmilewitz EA; Hebbel RP
    Blood; 1995 Sep; 86(5):2008-13. PubMed ID: 7655028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemoglobin. A biologic fenton reagent.
    Sadrzadeh SM; Graf E; Panter SS; Hallaway PE; Eaton JW
    J Biol Chem; 1984 Dec; 259(23):14354-6. PubMed ID: 6094553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction.
    Thomas C; Vile GF; Winterbourn CC
    Biochem Pharmacol; 1993 May; 45(10):1967-72. PubMed ID: 8390256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron-induced ascorbate oxidation in plasma as monitored by ascorbate free radical formation. No spin-trapping evidence for the hydroxyl radical in iron-overloaded plasma.
    Minetti M; Forte T; Soriani M; Quaresima V; Menditto A; Ferrari M
    Biochem J; 1992 Mar; 282 ( Pt 2)(Pt 2):459-65. PubMed ID: 1312330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sickle cell membranes and oxidative damage.
    Rice-Evans C; Omorphos SC; Baysal E
    Biochem J; 1986 Jul; 237(1):265-9. PubMed ID: 3800879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethanol oxidation by hydroxyl radicals: role of iron chelates, superoxide, and hydrogen peroxide.
    Feierman DE; Winston GW; Cederbaum AI
    Alcohol Clin Exp Res; 1985; 9(2):95-102. PubMed ID: 2988364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dusts causing pneumoconiosis generate .OH and produce hemolysis by acting as Fenton catalysts.
    Kennedy TP; Dodson R; Rao NV; Ky H; Hopkins C; Baser M; Tolley E; Hoidal JR
    Arch Biochem Biophys; 1989 Feb; 269(1):359-64. PubMed ID: 2537062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relative effectiveness of .OH, H2O2, O2-, and reducing free radicals in causing damage to biomembranes. A study of radiation damage to erythrocyte ghosts using selective free radical scavengers.
    Kong S; Davison AJ
    Biochim Biophys Acta; 1981 Jan; 640(1):313-25. PubMed ID: 6260172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Desferrioxamine as a lipid chain-breaking antioxidant in sickle erythrocyte membranes.
    Hartley A; Davies M; Rice-Evans C
    FEBS Lett; 1990 May; 264(1):145-8. PubMed ID: 2159892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auto-oxidation and a membrane-associated 'Fenton reagent': a possible explanation for development of membrane lesions in sickle erythrocytes.
    Hebbel RP
    Clin Haematol; 1985 Feb; 14(1):129-40. PubMed ID: 2985310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heme degradation in the presence of glutathione. A proposed mechanism to account for the high levels of non-heme iron found in the membranes of hemoglobinopathic red blood cells.
    Atamna H; Ginsburg H
    J Biol Chem; 1995 Oct; 270(42):24876-83. PubMed ID: 7559611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection, characterization, and bioavailability of membrane-associated iron in the intact sickle red cell.
    Sugihara T; Repka T; Hebbel RP
    J Clin Invest; 1992 Dec; 90(6):2327-32. PubMed ID: 1469090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative studies of enhanced iron-mediated production of hydroxyl radical by glutathione, cysteine, ascorbic acid, and selected catechols.
    Nappi AJ; Vass E
    Biochim Biophys Acta; 1997 Aug; 1336(2):295-302. PubMed ID: 9305802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chelation of nonheme iron within sickle erythrocytes by the hydroxypyridinone chelator CP094.
    Hartley A; Rice-Evans C
    Arch Biochem Biophys; 1992 Sep; 297(2):377-82. PubMed ID: 1497355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents.
    Dicker E; Cederbaum AI
    Biochem Pharmacol; 1991 Jul; 42(3):529-35. PubMed ID: 1650215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.