These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 1668610)

  • 21. Effect of Cu(2+)-ascorbic acid on lipid peroxidation, Mg(2+)-ATPase activity and spectrin of RBC membrane and reversal by erythropoietin.
    Chattopadhyay A; Das Choudhury TD; Basu MK; Datta AG
    Mol Cell Biochem; 1992 Dec; 118(1):23-30. PubMed ID: 1336813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radical-driven Fenton reactions: studies with paraquat, adriamycin, and anthraquinone 6-sulfonate and citrate, ATP, ADP, and pyrophosphate iron chelates.
    Vile GF; Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1987 Dec; 259(2):616-26. PubMed ID: 2827582
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron compartments associated with sickle RBC membranes: a mechanism for the targeting of oxidative damage.
    Kuross SA; Rank BH; Hebbel RP
    Prog Clin Biol Res; 1989; 319():601-10; discussion 611-3. PubMed ID: 2622931
    [No Abstract]   [Full Text] [Related]  

  • 24. Role of hydroxyl radicals in Escherichia coli killing induced by hydrogen peroxide.
    Brandi G; Cattabeni F; Albano A; Cantoni O
    Free Radic Res Commun; 1989; 6(1):47-55. PubMed ID: 2542139
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation of reactive oxygen species and DNA strand breakage during interaction of chromium (III) and hydrogen peroxide in vitro: evidence for a chromium (III)-mediated Fenton-like reaction.
    Tsou TC; Yang JL
    Chem Biol Interact; 1996 Dec; 102(3):133-53. PubMed ID: 9021167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ascorbate-stimulated lipid peroxidation in human brain is dependent on iron but not on hydroxyl radical.
    Andorn AC; Britton RS; Bacon BR
    J Neurochem; 1996 Aug; 67(2):717-22. PubMed ID: 8764600
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen peroxide-induced glutathione depletion and aldehyde dehydrogenase inhibition in erythrocytes.
    Towell JF; Wang RI
    Biochem Pharmacol; 1987 Jul; 36(13):2087-93. PubMed ID: 3038114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydroxy-urea protects erythrocytes against oxidative damage.
    Agil A; Sadrzadeh SM
    Redox Rep; 2000; 5(1):29-34. PubMed ID: 10905541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydroxyl radical formation and lipid peroxidation enhancement by chromium. In vitro study.
    Coudray C; Faure P; Rachidi S; Jeunet A; Richard MJ; Roussel AM; Favier A
    Biol Trace Elem Res; 1992; 32():161-70. PubMed ID: 1375053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ascorbate-enhanced lipid peroxidation in photooxidized cell membranes: cholesterol product analysis as a probe of reaction mechanism.
    Bachowski GJ; Thomas JP; Girotti AW
    Lipids; 1988 Jun; 23(6):580-6. PubMed ID: 3172988
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Desferrioxamine and membrane oxidation: radical scavenger or iron chelator?
    Hartley A; Davies MJ; Rice-Evans C
    Biochem Soc Trans; 1989 Dec; 17(6):1002-3. PubMed ID: 2628046
    [No Abstract]   [Full Text] [Related]  

  • 32. Xanthine oxidase-induced injury to endothelium: role of intracellular iron and hydroxyl radical.
    Kvietys PR; Inauen W; Bacon BR; Grisham MB
    Am J Physiol; 1989 Nov; 257(5 Pt 2):H1640-6. PubMed ID: 2556049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The production of activated oxygen species by an interaction of methemoglobin with ascorbate.
    Benatti U; Morelli A; Guida L; De Flora A
    Biochem Biophys Res Commun; 1983 Mar; 111(3):980-7. PubMed ID: 6301495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The molecular pathobiology of cell membrane iron: the sickle red cell as a model.
    Browne P; Shalev O; Hebbel RP
    Free Radic Biol Med; 1998 Apr; 24(6):1040-8. PubMed ID: 9607615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ADP-iron as a Fenton reactant: radical reactions detected by spin trapping, hydrogen abstraction, and aromatic hydroxylation.
    Gutteridge JM; Nagy I; Maidt L; Floyd RA
    Arch Biochem Biophys; 1990 Mar; 277(2):422-8. PubMed ID: 2155582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iron-mediated oxidative stress in erythrocytes.
    Rice-Evans C; Baysal E
    Biochem J; 1987 May; 244(1):191-6. PubMed ID: 3663112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of hydroxyl radical formation and ethanol oxidation by ethanol-inducible and other forms of rabbit liver microsomal cytochromes P-450.
    Ingelman-Sundberg M; Johansson I
    J Biol Chem; 1984 May; 259(10):6447-58. PubMed ID: 6327680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prooxidant action of desferrioxamine: Fenton-like production of hydroxyl radicals by reduced ferrioxamine.
    Borg DC; Schaich KM
    J Free Radic Biol Med; 1986; 2(4):237-43. PubMed ID: 3034996
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catalysis of soluble hemoglobin oxidation by free iron on sickle red cell membranes.
    Shalev O; Hebbel RP
    Blood; 1996 May; 87(9):3948-52. PubMed ID: 8611725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.