BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 16686435)

  • 1. A central role for oxygen-sensitive K+ channels and mitochondria in the specialized oxygen-sensing system.
    Archer SL; Michelakis ED; Thébaud B; Bonnet S; Moudgil R; Wu XC; Weir EK
    Novartis Found Symp; 2006; 272():157-71; discussion 171-5, 214-7. PubMed ID: 16686435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells.
    Michelakis ED; Thébaud B; Weir EK; Archer SL
    J Mol Cell Cardiol; 2004 Dec; 37(6):1119-36. PubMed ID: 15572043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxic pulmonary vasoconstriction.
    Moudgil R; Michelakis ED; Archer SL
    J Appl Physiol (1985); 2005 Jan; 98(1):390-403. PubMed ID: 15591309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mitochondrial redox oxygen sensor in the pulmonary vasculature and ductus arteriosus.
    Dunham-Snary KJ; Hong ZG; Xiong PY; Del Paggio JC; Herr JE; Johri AM; Archer SL
    Pflugers Arch; 2016 Jan; 468(1):43-58. PubMed ID: 26395471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. O2 sensing in the human ductus arteriosus: redox-sensitive K+ channels are regulated by mitochondria-derived hydrogen peroxide.
    Archer SL; Wu XC; Thébaud B; Moudgil R; Hashimoto K; Michelakis ED
    Biol Chem; 2004; 385(3-4):205-16. PubMed ID: 15134333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation.
    Archer SL; Weir EK; Reeve HL; Michelakis E
    Adv Exp Med Biol; 2000; 475():219-40. PubMed ID: 10849663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. O2 sensing in the human ductus arteriosus: regulation of voltage-gated K+ channels in smooth muscle cells by a mitochondrial redox sensor.
    Michelakis ED; Rebeyka I; Wu X; Nsair A; Thébaud B; Hashimoto K; Dyck JR; Haromy A; Harry G; Barr A; Archer SL
    Circ Res; 2002 Sep; 91(6):478-86. PubMed ID: 12242265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension.
    Bonnet S; Michelakis ED; Porter CJ; Andrade-Navarro MA; Thébaud B; Bonnet S; Haromy A; Harry G; Moudgil R; McMurtry MS; Weir EK; Archer SL
    Circulation; 2006 Jun; 113(22):2630-41. PubMed ID: 16735674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen-sensitive Kv channel gene transfer confers oxygen responsiveness to preterm rabbit and remodeled human ductus arteriosus: implications for infants with patent ductus arteriosus.
    Thébaud B; Michelakis ED; Wu XC; Moudgil R; Kuzyk M; Dyck JR; Harry G; Hashimoto K; Haromy A; Rebeyka I; Archer SL
    Circulation; 2004 Sep; 110(11):1372-9. PubMed ID: 15353504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADPH oxidase does not account fully for O2-sensing in model airway chemoreceptor cells.
    O'Kelly I; Peers C; Kemp PJ
    Biochem Biophys Res Commun; 2001 May; 283(5):1131-4. PubMed ID: 11355890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction.
    Dunham-Snary KJ; Wu D; Potus F; Sykes EA; Mewburn JD; Charles RL; Eaton P; Sultanian RA; Archer SL
    Circ Res; 2019 Jun; 124(12):1727-1746. PubMed ID: 30922174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutral sphingomyelinase, NADPH oxidase and reactive oxygen species. Role in acute hypoxic pulmonary vasoconstriction.
    Frazziano G; Moreno L; Moral-Sanz J; Menendez C; Escolano L; Gonzalez C; Villamor E; Alvarez-Sala JL; Cogolludo AL; Perez-Vizcaino F
    J Cell Physiol; 2011 Oct; 226(10):2633-40. PubMed ID: 21792922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen-sensing pathway for SK channels in the ovine adrenal medulla.
    Keating DJ; Rychkov GY; Giacomin P; Roberts ML
    Clin Exp Pharmacol Physiol; 2005 Oct; 32(10):882-7. PubMed ID: 16173951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular distribution of oxygen sensor candidates-oxidases, cytochromes, K+-channels--in the carotid body.
    Kummer W; Yamamoto Y
    Microsc Res Tech; 2002 Nov; 59(3):234-42. PubMed ID: 12384967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase.
    Archer SL; Reeve HL; Michelakis E; Puttagunta L; Waite R; Nelson DP; Dinauer MC; Weir EK
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):7944-9. PubMed ID: 10393927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role for mitochondrial reactive oxygen species in hypoxic pulmonary vasoconstriction.
    Waypa GB; Schumacker PT
    Novartis Found Symp; 2006; 272():176-92; discussion 192-5, 214-7. PubMed ID: 16686436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive oxygen species facilitate oxygen sensing.
    Prabhakar NR; Peng YJ; Yuan G; Kumar GK
    Novartis Found Symp; 2006; 272():95-9; discussion 100-5, 131-40. PubMed ID: 16686431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxic Pulmonary Vasoconstriction: From Molecular Mechanisms to Medicine.
    Dunham-Snary KJ; Wu D; Sykes EA; Thakrar A; Parlow LRG; Mewburn JD; Parlow JL; Archer SL
    Chest; 2017 Jan; 151(1):181-192. PubMed ID: 27645688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. O2 sensing at the mammalian carotid body: why multiple O2 sensors and multiple transmitters?
    Prabhakar NR
    Exp Physiol; 2006 Jan; 91(1):17-23. PubMed ID: 16239252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxic pulmonary vasoconstriction--invited article.
    Mark Evans A; Ward JP
    Adv Exp Med Biol; 2009; 648():351-60. PubMed ID: 19536499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.