BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 16686436)

  • 1. Role for mitochondrial reactive oxygen species in hypoxic pulmonary vasoconstriction.
    Waypa GB; Schumacker PT
    Novartis Found Symp; 2006; 272():176-92; discussion 192-5, 214-7. PubMed ID: 16686436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxic pulmonary vasoconstriction: redox events in oxygen sensing.
    Waypa GB; Schumacker PT
    J Appl Physiol (1985); 2005 Jan; 98(1):404-14. PubMed ID: 15591310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutral sphingomyelinase, NADPH oxidase and reactive oxygen species. Role in acute hypoxic pulmonary vasoconstriction.
    Frazziano G; Moreno L; Moral-Sanz J; Menendez C; Escolano L; Gonzalez C; Villamor E; Alvarez-Sala JL; Cogolludo AL; Perez-Vizcaino F
    J Cell Physiol; 2011 Oct; 226(10):2633-40. PubMed ID: 21792922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction.
    Sommer N; Strielkov I; Pak O; Weissmann N
    Eur Respir J; 2016 Jan; 47(1):288-303. PubMed ID: 26493804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation.
    Archer SL; Weir EK; Reeve HL; Michelakis E
    Adv Exp Med Biol; 2000; 475():219-40. PubMed ID: 10849663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells.
    Waypa GB; Guzy R; Mungai PT; Mack MM; Marks JD; Roe MW; Schumacker PT
    Circ Res; 2006 Oct; 99(9):970-8. PubMed ID: 17008601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. O(2) sensing in hypoxic pulmonary vasoconstriction: the mitochondrial door re-opens.
    Waypa GB; Schumacker PT
    Respir Physiol Neurobiol; 2002 Aug; 132(1):81-91. PubMed ID: 12126697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen sensing in hypoxic pulmonary vasoconstriction: using new tools to answer an age-old question.
    Waypa GB; Schumacker PT
    Exp Physiol; 2008 Jan; 93(1):133-8. PubMed ID: 17993507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells.
    Michelakis ED; Thébaud B; Weir EK; Archer SL
    J Mol Cell Cardiol; 2004 Dec; 37(6):1119-36. PubMed ID: 15572043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of k+ channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension.
    Moudgil R; Michelakis ED; Archer SL
    Microcirculation; 2006 Dec; 13(8):615-32. PubMed ID: 17085423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxic pulmonary vasoconstriction--triggered by an increase in reactive oxygen species?
    Weissmann N; Schermuly RT; Ghofrani HA; Hänze J; Goyal P; Grimminger F; Seeger W
    Novartis Found Symp; 2006; 272():196-208; discussion 208-17. PubMed ID: 16686437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of twin pore domain and other K+ channels in hypoxic pulmonary vasoconstriction.
    Gurney AM; Joshi S
    Novartis Found Symp; 2006; 272():218-28; discussion 228-33, 274-9. PubMed ID: 16686438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium, mitochondria and oxygen sensing in the pulmonary circulation.
    Ward JP; Snetkov VA; Aaronson PI
    Cell Calcium; 2004; 36(3-4):209-20. PubMed ID: 15261477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells.
    Archer SL; Wu XC; Thébaud B; Nsair A; Bonnet S; Tyrrell B; McMurtry MS; Hashimoto K; Harry G; Michelakis ED
    Circ Res; 2004 Aug; 95(3):308-18. PubMed ID: 15217912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+ release from intracellular stores is an initial step in hypoxic pulmonary vasoconstriction of rat pulmonary artery resistance vessels.
    Gelband CH; Gelband H
    Circulation; 1997 Nov; 96(10):3647-54. PubMed ID: 9396467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing.
    Waypa GB; Chandel NS; Schumacker PT
    Circ Res; 2001 Jun; 88(12):1259-66. PubMed ID: 11420302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A central role for oxygen-sensitive K+ channels and mitochondria in the specialized oxygen-sensing system.
    Archer SL; Michelakis ED; Thébaud B; Bonnet S; Moudgil R; Wu XC; Weir EK
    Novartis Found Symp; 2006; 272():157-71; discussion 171-5, 214-7. PubMed ID: 16686435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive oxygen species as mediators of oxygen signaling during fetal-to-neonatal circulatory transition.
    Villamor E; Moreno L; Mohammed R; Pérez-Vizcaíno F; Cogolludo A
    Free Radic Biol Med; 2019 Oct; 142():82-96. PubMed ID: 30995535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial transplantation attenuates hypoxic pulmonary vasoconstriction.
    Zhou J; Zhang J; Lu Y; Huang S; Xiao R; Zeng X; Zhang X; Li J; Wang T; Li T; Zhu L; Hu Q
    Oncotarget; 2016 May; 7(21):31284-98. PubMed ID: 27121314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The LKB1-AMPK-α1 signaling pathway triggers hypoxic pulmonary vasoconstriction downstream of mitochondria.
    Moral-Sanz J; Lewis SA; MacMillan S; Ross FA; Thomson A; Viollet B; Foretz M; Moran C; Hardie DG; Evans AM
    Sci Signal; 2018 Oct; 11(550):. PubMed ID: 30279167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.