These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16686496)

  • 1. Study of oscillations and pattern formation in the NO + CO reaction on Pt(100) surfaces through dynamic Monte Carlo simulation: toward a realistic model.
    Alas SJ; Zgrablich G
    J Phys Chem B; 2006 May; 110(19):9499-510. PubMed ID: 16686496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic study of the "surface explosion" phenomenon in the NO+CO reaction on Pt(100) through dynamic Monte Carlo simulation.
    Alas SJ; Vicente L
    J Chem Phys; 2008 Apr; 128(13):134705. PubMed ID: 18397092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Monte Carlo simulation of the NO + CO reaction on Rh(111).
    Avalos LA; Bustos V; Uñac R; Zaera F; Zgrablich G
    J Phys Chem B; 2006 Dec; 110(49):24964-71. PubMed ID: 17149918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic oscillations in the NO+CO reaction on the Pt(100) surface: an alternative reaction mechanism.
    Alas SJ; Cordero S; Kornhauser I; Zgrablich G
    J Chem Phys; 2005 Apr; 122(14):144705. PubMed ID: 15847551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening by kinetic Monte Carlo simulation of Pt-Au(100) surfaces for the steady-state decomposition of nitric oxide in excess dioxygen.
    Kieken LD; Neurock M; Mei D
    J Phys Chem B; 2005 Feb; 109(6):2234-44. PubMed ID: 16851216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A realistic kinetic Monte Carlo simulation of the faceting of a Pt(110) surface under reaction conditions.
    Monine MI; Pismen LM; Imbihl R
    J Chem Phys; 2004 Dec; 121(22):11332-44. PubMed ID: 15634090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO oxidation reaction on Pt(111) studied by the dynamic Monte Carlo method including lateral interactions of adsorbates.
    Nagasaka M; Kondoh H; Nakai I; Ohta T
    J Chem Phys; 2007 Jan; 126(4):044704. PubMed ID: 17286496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of the effect of surface-oxide formation on bistability in CO oxidation on Pt-group metals.
    Zhdanov VP
    J Chem Phys; 2007 Feb; 126(7):074706. PubMed ID: 17328626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study of pattern formation during the catalytic oxidation of CO on Pt{100} at low pressures.
    Anghel AT; Hoyle RB; Irurzun IM; Proctor MR; King DA
    J Chem Phys; 2007 Oct; 127(16):164711. PubMed ID: 17979375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient absorption studies and numerical modeling of iodine photoreduction by nanocrystalline TiO2 films.
    Green AN; Chandler RE; Haque SA; Nelson J; Durrant JR
    J Phys Chem B; 2005 Jan; 109(1):142-50. PubMed ID: 16850997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatio-temporal pattern formation during CO oxidation on Pt(100) at low and intermediate pressures: A comparative study.
    Lele T; Lauterbach J
    Chaos; 2002 Mar; 12(1):164-171. PubMed ID: 12779544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular beam measurements and Monte Carlo simulations of the kinetics of N2O decomposition on Rh(111) single-crystal surfaces.
    Omar Uñac R; Bustos V; Wilson J; Zgrablich G; Zaera F
    J Chem Phys; 2006 Aug; 125(7):074705. PubMed ID: 16942362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen island formation on Pt(111) studied by dynamic Monte Carlo simulation.
    Nagasaka M; Kondoh H; Nakai I; Ohta T
    J Chem Phys; 2005 Jan; 122(4):44715. PubMed ID: 15740291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure effects of benzene hydrogenation studied with sum frequency generation vibrational spectroscopy and kinetics on Pt(111) and Pt(100) single-crystal surfaces.
    Bratlie KM; Kliewer CJ; Somorjai GA
    J Phys Chem B; 2006 Sep; 110(36):17925-30. PubMed ID: 16956283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the CO oxidation reaction on O-precovered Pt(111) surfaces studied with near-edge x-ray absorption fine structure spectroscopy.
    Nakai I; Kondoh H; Amemiya K; Nagasaka M; Shimada T; Yokota R; Nambu A; Ohta T
    J Chem Phys; 2005 Apr; 122(13):134709. PubMed ID: 15847491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring supported-nanocluster heterogeneous catalyst formation: product and kinetic evidence for a 2-step, nucleation and autocatalytic growth mechanism of Pt(0)n formation from H2PtCl6 on Al2O3 or TiO2.
    Mondloch JE; Yan X; Finke RG
    J Am Chem Soc; 2009 May; 131(18):6389-96. PubMed ID: 19379011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpretation of the experimental data on the reduction reaction of NO by CO on rhodium by Monte Carlo simulations and by solving the kinetic equations of the reaction mechanism.
    Cortés J; Valencia E
    J Phys Chem B; 2006 Apr; 110(15):7887-97. PubMed ID: 16610887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supercritical carbon dioxide: an inert solvent for catalytic hydrogenation?
    Burgener M; Ferri D; Grunwaldt JD; Mallat T; Baiker A
    J Phys Chem B; 2005 Sep; 109(35):16794-800. PubMed ID: 16853138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pattern formation during the CO-oxidation involving subsurface oxygen.
    Rotermund HH; Pollmann M; Kevrekidis IG
    Chaos; 2002 Mar; 12(1):157-163. PubMed ID: 12779543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic Monte Carlo simulations of the interaction of oxygen with Pt(111).
    Sendner C; Gross A
    J Chem Phys; 2007 Jul; 127(1):014704. PubMed ID: 17627361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.