These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 16686523)
1. Orbital signatures of methyl in L-alanine. Falzon CT; Wang F; Pang W J Phys Chem B; 2006 May; 110(19):9713-9. PubMed ID: 16686523 [TBL] [Abstract][Full Text] [Related]
2. Orbital based electronic structural signatures of the guanine keto G-7H/G-9H tautomer pair as studied using dual space analysis. Jones DB; Wang F; Winkler DA; Brunger MJ Biophys Chem; 2006 May; 121(2):105-20. PubMed ID: 16464529 [TBL] [Abstract][Full Text] [Related]
3. Understanding glycine conformation through molecular orbitals. Falzon CT; Wang F J Chem Phys; 2005 Dec; 123(21):214307. PubMed ID: 16356048 [TBL] [Abstract][Full Text] [Related]
4. Valence orbital response to pseudorotation of tetrahydrofuran: a snapshot using dual space analysis. Duffy P; Sordo JA; Wang F J Chem Phys; 2008 Mar; 128(12):125102. PubMed ID: 18376977 [TBL] [Abstract][Full Text] [Related]
5. Intramolecular interactions of L-phenylalanine: Valence ionization spectra and orbital momentum distributions of its fragment molecules. Ganesan A; Wang F; Falzon C J Comput Chem; 2011 Feb; 32(3):525-35. PubMed ID: 20806261 [TBL] [Abstract][Full Text] [Related]
6. Assessment of Quantum Mechanical Models Based on Resolved Orbital Momentum Distributions of n-Butane in the Outer Valence Shell. Wang F J Phys Chem A; 2003 Nov; 107(47):10199-207. PubMed ID: 26313528 [TBL] [Abstract][Full Text] [Related]
7. Experimental and theoretical electron momentum spectroscopic study of the valence electronic structure of tetrahydrofuran under pseudorotation. Ning CG; Huang YR; Zhang SF; Deng JK; Liu K; Luo ZH; Wang F J Phys Chem A; 2008 Nov; 112(44):11078-87. PubMed ID: 18842033 [TBL] [Abstract][Full Text] [Related]
8. Coexistence of 1,3-butadiene conformers in ionization energies and Dyson orbitals. Saha S; Wang F; Falzon CT; Brunger MJ J Chem Phys; 2005 Sep; 123(12):124315. PubMed ID: 16392490 [TBL] [Abstract][Full Text] [Related]
9. Study of the photoelectron and electron momentum spectra of cyclopentene using benchmark Dyson orbital theories. Huang YR; Ning CG; Deng JK; Deleuze MS Phys Chem Chem Phys; 2008 May; 10(17):2374-89. PubMed ID: 18414729 [TBL] [Abstract][Full Text] [Related]
10. An investigation of valence shell orbital momentum profiles of difluoromethane by binary (e,2e) spectroscopy. Su GL; Ning CG; Zhang SF; Ren XG; Zhou H; Li B; Huang F; Li GQ; Deng JK J Chem Phys; 2005 Feb; 122(5):54301. PubMed ID: 15740316 [TBL] [Abstract][Full Text] [Related]
11. Electron momentum spectroscopy study on valence electronic structures of ethylamine. Yan M; Shan X; Wu F; Xia X; Wang K; Xu K; Chen X J Phys Chem A; 2009 Jan; 113(2):507-12. PubMed ID: 19093860 [TBL] [Abstract][Full Text] [Related]
12. Structures of dense glycine and alanine adlayers on chiral Cu(3,1,17) surfaces. Rankin RB; Sholl DS Langmuir; 2006 Sep; 22(19):8096-103. PubMed ID: 16952247 [TBL] [Abstract][Full Text] [Related]
13. Probing the electronic structure of peptide bonds using methyl groups. Plusquellic DF; Pratt DW J Phys Chem A; 2007 Aug; 111(31):7391-7. PubMed ID: 17585842 [TBL] [Abstract][Full Text] [Related]
14. Intramolecular interaction energies in model alanine and glycine tetrapeptides. Evaluation of anisotropy, polarization, and correlation effects. A parallel ab initio HF/MP2, DFT, and polarizable molecular mechanics study. Gresh N; Kafafi SA; Truchon JF; Salahub DR J Comput Chem; 2004 Apr; 25(6):823-34. PubMed ID: 15011254 [TBL] [Abstract][Full Text] [Related]
15. Investigation into the valence electronic structure of norbornene using electron momentum spectroscopy, Green's function, and density functional theories. Knippenberg S; Nixon KL; Mackenzie-Ross H; Brunger MJ; Wang F; Deleuze MS; François JP; Winkler DA J Phys Chem A; 2005 Oct; 109(41):9324-40. PubMed ID: 16833274 [TBL] [Abstract][Full Text] [Related]
16. Core molecular orbital contribution to N2O isomerization as studied using theoretical electron momentum spectroscopy. Wang F; Larkins FP; Brunger MJ; Michalewicz MT; Winkler DA Spectrochim Acta A Mol Biomol Spectrosc; 2001 Jan; 57(1):9-15. PubMed ID: 11209870 [TBL] [Abstract][Full Text] [Related]
17. Dyson orbitals of N2O: electron momentum spectroscopy and symmetry adapted cluster-configuration interaction calculations. Miao YR; Ning CG; Liu K; Deng JK J Chem Phys; 2011 May; 134(20):204304. PubMed ID: 21639437 [TBL] [Abstract][Full Text] [Related]
18. Molecule intrinsic minimal basis sets. I. Exact resolution of ab initio optimized molecular orbitals in terms of deformed atomic minimal-basis orbitals. Lu WC; Wang CZ; Schmidt MW; Bytautas L; Ho KM; Ruedenberg K J Chem Phys; 2004 Feb; 120(6):2629-37. PubMed ID: 15268406 [TBL] [Abstract][Full Text] [Related]
19. Interaction of Co+ and Co2+ with glycine. A theoretical study. Constantino E; RodrÃguez-Santiago L; Sodupe M; Tortajada J J Phys Chem A; 2005 Jan; 109(1):224-30. PubMed ID: 16839110 [TBL] [Abstract][Full Text] [Related]
20. Electronic excitations of glycine, alanine, and cysteine conformers from first-principles calculations. Maul R; Preuss M; Ortmann F; Hannewald K; Bechstedt F J Phys Chem A; 2007 May; 111(20):4370-7. PubMed ID: 17461555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]