BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16686597)

  • 1. Nucleotides bind to the C-terminus of ClC-5.
    Wellhauser L; Kuo HH; Stratford FL; Ramjeesingh M; Huan LJ; Luong W; Li C; Deber CM; Bear CE
    Biochem J; 2006 Sep; 398(2):289-94. PubMed ID: 16686597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of ATP to the CBS domains in the C-terminal region of CLC-1.
    Tseng PY; Yu WP; Liu HY; Zhang XD; Zou X; Chen TY
    J Gen Physiol; 2011 Apr; 137(4):357-68. PubMed ID: 21444658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide recognition by the cytoplasmic domain of the human chloride transporter ClC-5.
    Meyer S; Savaresi S; Forster IC; Dutzler R
    Nat Struct Mol Biol; 2007 Jan; 14(1):60-7. PubMed ID: 17195847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoplasmic ATP-sensing domains regulate gating of skeletal muscle ClC-1 chloride channels.
    Bennetts B; Rychkov GY; Ng HL; Morton CJ; Stapleton D; Parker MW; Cromer BA
    J Biol Chem; 2005 Sep; 280(37):32452-8. PubMed ID: 16027167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A role for CBS domain 2 in trafficking of chloride channel CLC-5.
    Carr G; Simmons N; Sayer J
    Biochem Biophys Res Commun; 2003 Oct; 310(2):600-5. PubMed ID: 14521953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique gating properties of C. elegans ClC anion channel splice variants are determined by altered CBS domain conformation and the R-helix linker.
    Dave S; Sheehan JH; Meiler J; Strange K
    Channels (Austin); 2010; 4(4):289-301. PubMed ID: 20581474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of ClC-2 gating by intracellular ATP.
    Stölting G; Teodorescu G; Begemann B; Schubert J; Nabbout R; Toliat MR; Sander T; Nürnberg P; Lerche H; Fahlke C
    Pflugers Arch; 2013 Oct; 465(10):1423-37. PubMed ID: 23632988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional evaluation of Dent's disease-causing mutations: implications for ClC-5 channel trafficking and internalization.
    Ludwig M; Doroszewicz J; Seyberth HW; Bökenkamp A; Balluch B; Nuutinen M; Utsch B; Waldegger S
    Hum Genet; 2005 Jul; 117(2-3):228-37. PubMed ID: 15895257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional and structural conservation of CBS domains from CLC chloride channels.
    Estévez R; Pusch M; Ferrer-Costa C; Orozco M; Jentsch TJ
    J Physiol; 2004 Jun; 557(Pt 2):363-78. PubMed ID: 14724190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP binding to the C terminus of the Arabidopsis thaliana nitrate/proton antiporter, AtCLCa, regulates nitrate transport into plant vacuoles.
    De Angeli A; Moran O; Wege S; Filleur S; Ephritikhine G; Thomine S; Barbier-Brygoo H; Gambale F
    J Biol Chem; 2009 Sep; 284(39):26526-32. PubMed ID: 19636075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coexpression of complementary fragments of ClC-5 and restoration of chloride channel function in a Dent's disease mutation.
    Mo L; Xiong W; Qian T; Sun H; Wills NK
    Am J Physiol Cell Physiol; 2004 Jan; 286(1):C79-89. PubMed ID: 13679301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The intracellular region of ClC-3 chloride channel is in a partially folded state and a monomer.
    Li SJ; Kawazaki M; Ogasahara K; Nakagawa A
    J Biochem; 2006 May; 139(5):813-20. PubMed ID: 16751588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The muscle chloride channel ClC-1 is not directly regulated by intracellular ATP.
    Zifarelli G; Pusch M
    J Gen Physiol; 2008 Feb; 131(2):109-16. PubMed ID: 18227271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations.
    Scott JW; Hawley SA; Green KA; Anis M; Stewart G; Scullion GA; Norman DG; Hardie DG
    J Clin Invest; 2004 Jan; 113(2):274-84. PubMed ID: 14722619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gating of human ClC-2 chloride channels and regulation by carboxy-terminal domains.
    Garcia-Olivares J; Alekov A; Boroumand MR; Begemann B; Hidalgo P; Fahlke C
    J Physiol; 2008 Nov; 586(22):5325-36. PubMed ID: 18801843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gating and trafficking of ClC-2 chloride channel without cystathionine beta-synthase domains.
    Arreola J; De Santiago-Castillo JA; Sánchez JE; Nieto PG
    J Physiol; 2008 Nov; 586(22):5289. PubMed ID: 19011132
    [No Abstract]   [Full Text] [Related]  

  • 17. Chloride channels and endocytosis: new insights from Dent's disease and ClC-5 knockout mice.
    Devuyst O; Jouret F; Auzanneau C; Courtoy PJ
    Nephron Physiol; 2005; 99(3):p69-73. PubMed ID: 15637424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The PDZ-binding chloride channel ClC-3B localizes to the Golgi and associates with cystic fibrosis transmembrane conductance regulator-interacting PDZ proteins.
    Gentzsch M; Cui L; Mengos A; Chang XB; Chen JH; Riordan JR
    J Biol Chem; 2003 Feb; 278(8):6440-9. PubMed ID: 12471024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular regulation of human ClC-5 by adenine nucleotides.
    Zifarelli G; Pusch M
    EMBO Rep; 2009 Oct; 10(10):1111-6. PubMed ID: 19713962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of CBS and Bateman Domains in Phosphorylation-Dependent Regulation of a CLC Anion Channel.
    Yamada T; Krzeminski M; Bozoky Z; Forman-Kay JD; Strange K
    Biophys J; 2016 Nov; 111(9):1876-1886. PubMed ID: 27806269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.