BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 16686602)

  • 1. Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins.
    Schwab MA; Sauer SW; Okun JG; Nijtmans LG; Rodenburg RJ; van den Heuvel LP; Dröse S; Brandt U; Hoffmann GF; Ter Laak H; Kölker S; Smeitink JA
    Biochem J; 2006 Aug; 398(1):107-12. PubMed ID: 16686602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylmalonic acid, a biochemical hallmark of methylmalonic acidurias but no inhibitor of mitochondrial respiratory chain.
    Kölker S; Schwab M; Hörster F; Sauer S; Hinz A; Wolf NI; Mayatepek E; Hoffmann GF; Smeitink JA; Okun JG
    J Biol Chem; 2003 Nov; 278(48):47388-93. PubMed ID: 12972416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propionate-induced changes in cardiac metabolism, notably CoA trapping, are not altered by l-carnitine.
    Wang Y; Christopher BA; Wilson KA; Muoio D; McGarrah RW; Brunengraber H; Zhang GF
    Am J Physiol Endocrinol Metab; 2018 Oct; 315(4):E622-E633. PubMed ID: 30016154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the mechanism of action of the antifungal agent propionate.
    Brock M; Buckel W
    Eur J Biochem; 2004 Aug; 271(15):3227-41. PubMed ID: 15265042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propionate mitochondrial toxicity in liver and skeletal muscle: acyl CoA levels.
    Matsuishi T; Stumpf DA; Seliem M; Eguren LA; Chrislip K
    Biochem Med Metab Biol; 1991 Apr; 45(2):244-53. PubMed ID: 1883630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurodegeneration and chronic renal failure in methylmalonic aciduria--a pathophysiological approach.
    Morath MA; Okun JG; Müller IB; Sauer SW; Hörster F; Hoffmann GF; Kölker S
    J Inherit Metab Dis; 2008 Feb; 31(1):35-43. PubMed ID: 17846917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of pyruvate dehydrogenase complex activity by 3-bromopyruvate affects blood platelets responses in type 2 diabetes.
    Michno A; Grużewska K; Bielarczyk H; Zyśk M; Szutowicz A
    Pharmacol Rep; 2020 Feb; 72(1):225-237. PubMed ID: 32016856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of odd-numbered fatty acid oxidation to propionate production in neonates with methylmalonic and propionic acidaemias.
    Wendel U; Zass R; Leupold D
    Eur J Pediatr; 1993 Dec; 152(12):1021-3. PubMed ID: 8131803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of odd-numbered long-chain fatty acids in fetuses and neonates with inherited disorders of propionate metabolism.
    Wendel U; Baumgartner R; van der Meer SB; Spaapen LJ
    Pediatr Res; 1991 Apr; 29(4 Pt 1):403-5. PubMed ID: 1852536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of propionate and carnitine on the hepatic oxidation of short- and medium-chain-length fatty acids.
    Brass EP; Beyerinck RA
    Biochem J; 1988 Mar; 250(3):819-25. PubMed ID: 3134008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical and anaplerotic applications of in vitro models of propionic acidemia and methylmalonic acidemia using patient-derived primary hepatocytes.
    Collado MS; Armstrong AJ; Olson M; Hoang SA; Day N; Summar M; Chapman KA; Reardon J; Figler RA; Wamhoff BR
    Mol Genet Metab; 2020 Jul; 130(3):183-196. PubMed ID: 32451238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute neonatal nonketotic hyperglycinemia: normal propionate and methylmalonate metabolism.
    Baumgartner ER; Bachmann C; Brechbühler T; Wick H
    Pediatr Res; 1975 Jul; 9(7):559-64. PubMed ID: 240144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of hepatic propionyl-CoA synthetase activity by organic acids. Reversal of propionate inhibition of pyruvate metabolism.
    Krahenbuhl S; Brass EP
    Biochem Pharmacol; 1991 Mar 15-Apr 1; 41(6-7):1015-23. PubMed ID: 2009071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of bovine kidney pyruvate dehydrogenase kinase activity by CoA esters and their mechanism of action.
    Rahmatullah M; Roche TE
    J Biol Chem; 1985 Aug; 260(18):10146-52. PubMed ID: 4019505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tricarboxylic acid cycle enzyme activities in a mouse model of methylmalonic aciduria.
    Wongkittichote P; Cunningham G; Summar ML; Pumbo E; Forny P; Baumgartner MR; Chapman KA
    Mol Genet Metab; 2019 Dec; 128(4):444-451. PubMed ID: 31648943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic acidurias in adults: late complications and management.
    Tuncel AT; Boy N; Morath MA; Hörster F; Mütze U; Kölker S
    J Inherit Metab Dis; 2018 Sep; 41(5):765-776. PubMed ID: 29335813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of acetate and octanoate on tricarboxylic acid cycle metabolite disposal during propionate oxidation in the perfused rat heart.
    Sundqvist KE; Peuhkurinen KJ; Hiltunen JK; Hassinen IE
    Biochim Biophys Acta; 1984 Oct; 801(3):429-36. PubMed ID: 6487652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of mammalian pyruvate dehydrogenase complex by metabolites of 3-mercaptopropanoic acid.
    Kushner L; Schulz H
    Life Sci; 1987 Jul; 41(4):485-90. PubMed ID: 3600189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of short- and medium-chain organic acids, acylcarnitines, and acyl-CoAs on mitochondrial energy metabolism.
    Sauer SW; Okun JG; Hoffmann GF; Koelker S; Morath MA
    Biochim Biophys Acta; 2008 Oct; 1777(10):1276-82. PubMed ID: 18582432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Candida albicans utilizes a modified β-oxidation pathway for the degradation of toxic propionyl-CoA.
    Otzen C; Bardl B; Jacobsen ID; Nett M; Brock M
    J Biol Chem; 2014 Mar; 289(12):8151-69. PubMed ID: 24497638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.