BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 16686602)

  • 21. Inter-relations between 3-hydroxypropionate and propionate metabolism in rat liver: relevance to disorders of propionyl-CoA metabolism.
    Wilson KA; Han Y; Zhang M; Hess JP; Chapman KA; Cline GW; Tochtrop GP; Brunengraber H; Zhang GF
    Am J Physiol Endocrinol Metab; 2017 Oct; 313(4):E413-E428. PubMed ID: 28634175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Defective oxidation of pristanic acid by fibroblasts from patients with disorders in propionic acid metabolism.
    Poulos A; Johnson D; Singh H
    Clin Genet; 1990 Feb; 37(2):106-10. PubMed ID: 2311265
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Urinary excretion of l-carnitine and acylcarnitines by patients with disorders of organic acid metabolism: evidence for secondary insufficiency of l-carnitine.
    Chalmers RA; Roe CR; Stacey TE; Hoppel CL
    Pediatr Res; 1984 Dec; 18(12):1325-8. PubMed ID: 6441143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disruption of mitochondrial homeostasis in organic acidurias: insights from human and animal studies.
    Wajner M; Goodman SI
    J Bioenerg Biomembr; 2011 Feb; 43(1):31-8. PubMed ID: 21249436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitochondrial damage in renal epithelial cells is potentiated by protein exposure in propionic aciduria.
    Schumann A; Belche V; Schaller K; Grünert SC; Kaech A; Baumgartner MR; Kölker S; Hannibal L; Spiekerkoetter U
    J Inherit Metab Dis; 2021 Nov; 44(6):1330-1342. PubMed ID: 34297429
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria.
    de Keyzer Y; Valayannopoulos V; Benoist JF; Batteux F; Lacaille F; Hubert L; Chrétien D; Chadefeaux-Vekemans B; Niaudet P; Touati G; Munnich A; de Lonlay P
    Pediatr Res; 2009 Jul; 66(1):91-5. PubMed ID: 19342984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Propionyl-CoA carboxylase pcca-1 and pccb-1 gene deletions in Caenorhabditis elegans globally impair mitochondrial energy metabolism.
    Chapman KA; Ostrovsky J; Rao M; Dingley SD; Polyak E; Yudkoff M; Xiao R; Bennett MJ; Falk MJ
    J Inherit Metab Dis; 2018 Mar; 41(2):157-168. PubMed ID: 29159707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolism of propionic acid to a novel acyl-coenzyme A thioester by mammalian cell lines and platelets.
    Snyder NW; Basu SS; Worth AJ; Mesaros C; Blair IA
    J Lipid Res; 2015 Jan; 56(1):142-50. PubMed ID: 25424005
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of propionate on the regulation of the pyruvate dehydrogenase complex in the rat liver.
    Patel TB; DeBuysere MS; Olson MS
    Arch Biochem Biophys; 1983 Feb; 220(2):405-14. PubMed ID: 6824332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition by propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria. A possible explanation for hyperammonemia in propionic and methylmalonic acidemia.
    Coude FX; Sweetman L; Nyhan WL
    J Clin Invest; 1979 Dec; 64(6):1544-51. PubMed ID: 500823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 2-Methylcitric acid impairs glutamate metabolism and induces permeability transition in brain mitochondria.
    Amaral AU; Cecatto C; Castilho RF; Wajner M
    J Neurochem; 2016 Apr; 137(1):62-75. PubMed ID: 26800654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential inhibitory effect of long-chain acyl-CoA esters on succinate and glutamate transport into rat liver mitochondria and its possible implications for long-chain fatty acid oxidation defects.
    Ventura FV; Ruiter J; Ijlst L; de Almeida IT; Wanders RJ
    Mol Genet Metab; 2005 Nov; 86(3):344-52. PubMed ID: 16176879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carglumic acid: an additional therapy in the treatment of organic acidurias with hyperammonemia?
    Levrat V; Forest I; Fouilhoux A; Acquaviva C; Vianey-Saban C; Guffon N
    Orphanet J Rare Dis; 2008 Jan; 3():2. PubMed ID: 18234091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Infantile mitochondrial DNA depletion syndrome associated with methylmalonic aciduria and 3-methylcrotonyl-CoA and propionyl-CoA carboxylase deficiencies in two unrelated patients: a new phenotype of mtDNA depletion syndrome.
    Yano S; Li L; Le TP; Moseley K; Guedalia A; Lee J; Gonzalez I; Boles RG
    J Inherit Metab Dis; 2003; 26(5):481-8. PubMed ID: 14518828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular and computational models reveal environmental and metabolic interactions in MMUT-type methylmalonic aciduria.
    Ramon C; Traversi F; Bürer C; Froese DS; Stelling J
    J Inherit Metab Dis; 2023 May; 46(3):421-435. PubMed ID: 36371683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurement of the energy-generating capacity of human muscle mitochondria: diagnostic procedure and application to human pathology.
    Janssen AJ; Trijbels FJ; Sengers RC; Wintjes LT; Ruitenbeek W; Smeitink JA; Morava E; van Engelen BG; van den Heuvel LP; Rodenburg RJ
    Clin Chem; 2006 May; 52(5):860-71. PubMed ID: 16543390
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The specific inhibition of the pyruvate dehydrogenase complex from pig kidney by propionyl-CoA and isovaleryl-Co-A.
    Gregersen N
    Biochem Med; 1981 Aug; 26(1):20-7. PubMed ID: 7295301
    [No Abstract]   [Full Text] [Related]  

  • 38. On the differences between urinary metabolite excretion and odd-numbered fatty acid production in propionic and methylmalonic acidaemias.
    Wendel U; Eissler A; Sperl W; Schadewaldt P
    J Inherit Metab Dis; 1995; 18(5):584-91. PubMed ID: 8598639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unique acyl-carnitine profiles are potential biomarkers for acquired mitochondrial disease in autism spectrum disorder.
    Frye RE; Melnyk S; Macfabe DF
    Transl Psychiatry; 2013 Jan; 3(1):e220. PubMed ID: 23340503
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deregulation of mitochondrial functions provoked by long-chain fatty acid accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial permeability transition deficiencies in rat heart--mitochondrial permeability transition pore opening as a potential contributing pathomechanism of cardiac alterations in these disorders.
    Cecatto C; Hickmann FH; Rodrigues MD; Amaral AU; Wajner M
    FEBS J; 2015 Dec; 282(24):4714-26. PubMed ID: 26408230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.