These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 16686602)

  • 41. Diabetes and branched-chain amino acids: What is the link?
    Bloomgarden Z
    J Diabetes; 2018 May; 10(5):350-352. PubMed ID: 29369529
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolic response to carnitine in methylmalonic aciduria. An effective strategy for elimination of propionyl groups.
    Roe CR; Hoppel CL; Stacey TE; Chalmers RA; Tracey BM; Millington DS
    Arch Dis Child; 1983 Nov; 58(11):916-20. PubMed ID: 6651329
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Disturbance of bioenergetics and calcium homeostasis provoked by metabolites accumulating in propionic acidemia in heart mitochondria of developing rats.
    Roginski AC; Wajner A; Cecatto C; Wajner SM; Castilho RF; Wajner M; Amaral AU
    Biochim Biophys Acta Mol Basis Dis; 2020 May; 1866(5):165682. PubMed ID: 31931102
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interactions between alpha-ketoisovalerate metabolism and the pathways of gluconeogenesis and urea synthesis in isolated hepatocytes.
    Martin-Requero A; Corkey BE; Cerdan S; Walajtys-Rode E; Parrilla RL; Williamson JR
    J Biol Chem; 1983 Mar; 258(6):3673-81. PubMed ID: 6833225
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of pyruvate dehydrogenase during infusion of fatty acids of varying chain lengths in the perfused rat heart.
    Latipää PM; Peuhkurinen KJ; Hiltunen JK; Hassinen IE
    J Mol Cell Cardiol; 1985 Dec; 17(12):1161-71. PubMed ID: 4087305
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Connection of propionyl-CoA metabolism to polyketide biosynthesis in Aspergillus nidulans.
    Zhang YQ; Brock M; Keller NP
    Genetics; 2004 Oct; 168(2):785-94. PubMed ID: 15514053
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioenergetics in glutaryl-coenzyme A dehydrogenase deficiency: a role for glutaryl-coenzyme A.
    Sauer SW; Okun JG; Schwab MA; Crnic LR; Hoffmann GF; Goodman SI; Koeller DM; Kölker S
    J Biol Chem; 2005 Jun; 280(23):21830-6. PubMed ID: 15840571
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Succinyl-CoA synthetase (SUCLA2) deficiency in two siblings with impaired activity of other mitochondrial oxidative enzymes in skeletal muscle without mitochondrial DNA depletion.
    Huang X; Bedoyan JK; Demirbas D; Harris DJ; Miron A; Edelheit S; Grahame G; DeBrosse SD; Wong LJ; Hoppel CL; Kerr DS; Anselm I; Berry GT
    Mol Genet Metab; 2017 Mar; 120(3):213-222. PubMed ID: 27913098
    [TBL] [Abstract][Full Text] [Related]  

  • 49. L-carnitine enhances excretion of propionyl coenzyme A as propionylcarnitine in propionic acidemia.
    Roe CR; Millington DS; Maltby DA; Bohan TP; Hoppel CL
    J Clin Invest; 1984 Jun; 73(6):1785-8. PubMed ID: 6725560
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of fatty acids and their acyl-CoA esters on protein kinase C activity in fibroblasts: possible implications in fatty acid oxidation defects.
    Nesher M; Boneh A
    Biochim Biophys Acta; 1994 Mar; 1221(1):66-72. PubMed ID: 8130278
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Oxidative stress parameters in urine from patients with disorders of propionate metabolism: a beneficial effect of L:-carnitine supplementation.
    Ribas GS; Biancini GB; Mescka C; Wayhs CY; Sitta A; Wajner M; Vargas CR
    Cell Mol Neurobiol; 2012 Jan; 32(1):77-82. PubMed ID: 21833551
    [TBL] [Abstract][Full Text] [Related]  

  • 52. On the origin of 3-methylglutaconic acid in disorders of mitochondrial energy metabolism.
    Ikon N; Ryan RO
    J Inherit Metab Dis; 2016 Sep; 39(5):749-756. PubMed ID: 27091556
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Uncoupling, metabolic inhibition and induction of mitochondrial permeability transition in rat liver mitochondria caused by the major long-chain hydroxyl monocarboxylic fatty acids accumulating in LCHAD deficiency.
    Hickmann FH; Cecatto C; Kleemann D; Monteiro WO; Castilho RF; Amaral AU; Wajner M
    Biochim Biophys Acta; 2015; 1847(6-7):620-8. PubMed ID: 25868874
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Substrate inhibition in the tricarboxylic acid cycle].
    Dynnik VV; Maevskiĭ EI; Grigorenko EV; Kim IuV
    Biofizika; 1984; 29(6):954-8. PubMed ID: 6518172
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanisms of growth inhibition by propionate and restoration of the growth by sodium bicarbonate or acetate in Rhodopseudomonas sphaeroides S.
    Maruyama K; Kitamura H
    J Biochem; 1985 Sep; 98(3):819-24. PubMed ID: 3003041
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 'Classical' organic acidurias, propionic aciduria, methylmalonic aciduria and isovaleric aciduria: long-term outcome and effects of expanded newborn screening using tandem mass spectrometry.
    Dionisi-Vici C; Deodato F; Röschinger W; Rhead W; Wilcken B
    J Inherit Metab Dis; 2006; 29(2-3):383-9. PubMed ID: 16763906
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Clinical and biochemical characterization of four patients with mutations in ECHS1.
    Ferdinandusse S; Friederich MW; Burlina A; Ruiter JP; Coughlin CR; Dishop MK; Gallagher RC; Bedoyan JK; Vaz FM; Waterham HR; Gowan K; Chatfield K; Bloom K; Bennett MJ; Elpeleg O; Van Hove JL; Wanders RJ
    Orphanet J Rare Dis; 2015 Jun; 10():79. PubMed ID: 26081110
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Propionate increases neuronal histone acetylation, but is metabolized oxidatively by glia. Relevance for propionic acidemia.
    Nguyen NH; Morland C; Gonzalez SV; Rise F; Storm-Mathisen J; Gundersen V; Hassel B
    J Neurochem; 2007 May; 101(3):806-14. PubMed ID: 17286595
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Toxic synergism between quinolinic acid and organic acids accumulating in glutaric acidemia type I and in disorders of propionate metabolism in rat brain synaptosomes: Relevance for metabolic acidemias.
    Colín-González AL; Paz-Loyola AL; Serratos I; Seminotti B; Ribeiro CA; Leipnitz G; Souza DO; Wajner M; Santamaría A
    Neuroscience; 2015 Nov; 308():64-74. PubMed ID: 26343296
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of cytosolic and mitochondrial enzyme alterations in the livers of propionic or methylmalonic acidemia: a reduction of cytochrome oxidase activity.
    Hayasaka K; Metoki K; Satoh T; Narisawa K; Tada K; Kawakami T; Matsuo N; Aoki T
    Tohoku J Exp Med; 1982 Jul; 137(3):329-34. PubMed ID: 6287671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.