These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 16686603)
1. Anomalous scattering analysis of Agrobacterium radiobacter phosphotriesterase: the prominent role of iron in the heterobinuclear active site. Jackson CJ; Carr PD; Kim HK; Liu JW; Herrald P; Mitić N; Schenk G; Smith CA; Ollis DL Biochem J; 2006 Aug; 397(3):501-8. PubMed ID: 16686603 [TBL] [Abstract][Full Text] [Related]
2. The structure of an enzyme-product complex reveals the critical role of a terminal hydroxide nucleophile in the bacterial phosphotriesterase mechanism. Jackson C; Kim HK; Carr PD; Liu JW; Ollis DL Biochim Biophys Acta; 2005 Aug; 1752(1):56-64. PubMed ID: 16054447 [TBL] [Abstract][Full Text] [Related]
3. The organophosphate-degrading enzyme from Agrobacterium radiobacter displays mechanistic flexibility for catalysis. Ely F; Hadler KS; Gahan LR; Guddat LW; Ollis DL; Schenk G Biochem J; 2010 Dec; 432(3):565-73. PubMed ID: 20868365 [TBL] [Abstract][Full Text] [Related]
4. In crystallo capture of a Michaelis complex and product-binding modes of a bacterial phosphotriesterase. Jackson CJ; Foo JL; Kim HK; Carr PD; Liu JW; Salem G; Ollis DL J Mol Biol; 2008 Feb; 375(5):1189-96. PubMed ID: 18082180 [TBL] [Abstract][Full Text] [Related]
5. Trimethylphosphate and Dimethylphosphate Hydrolysis by Binuclear Cd Pinto G; Mazzone G; Russo N; Toscano M Chemistry; 2017 Oct; 23(55):13742-13753. PubMed ID: 28661038 [TBL] [Abstract][Full Text] [Related]
6. Displacement of iron by zinc at the diiron site of Desulfovibrio vulgaris rubrerythrin: X-ray crystal structure and anomalous scattering analysis. Jin S; Kurtz DM; Liu ZJ; Rose J; Wang BC J Inorg Biochem; 2004 May; 98(5):786-96. PubMed ID: 15134924 [TBL] [Abstract][Full Text] [Related]
7. Phosphate-bound structure of an organophosphate-degrading enzyme from Agrobacterium radiobacter. Ely F; Pedroso MM; Gahan LR; Ollis DL; Guddat LW; Schenk G J Inorg Biochem; 2012 Jan; 106(1):19-22. PubMed ID: 22112835 [TBL] [Abstract][Full Text] [Related]
8. Effect of metal binding and posttranslational lysine carboxylation on the activity of recombinant hydantoinase. Huang CY; Hsu CC; Chen MC; Yang YS J Biol Inorg Chem; 2009 Jan; 14(1):111-21. PubMed ID: 18781344 [TBL] [Abstract][Full Text] [Related]
9. Increased expression of a bacterial phosphotriesterase in Escherichia coli through directed evolution. McLoughlin SY; Jackson C; Liu JW; Ollis D Protein Expr Purif; 2005 Jun; 41(2):433-40. PubMed ID: 15866732 [TBL] [Abstract][Full Text] [Related]
10. Evolution of an organophosphate-degrading enzyme: a comparison of natural and directed evolution. Yang H; Carr PD; McLoughlin SY; Liu JW; Horne I; Qiu X; Jeffries CM; Russell RJ; Oakeshott JG; Ollis DL Protein Eng; 2003 Feb; 16(2):135-45. PubMed ID: 12676982 [TBL] [Abstract][Full Text] [Related]
11. Structure-based rational design of a phosphotriesterase. Jackson CJ; Weir K; Herlt A; Khurana J; Sutherland TD; Horne I; Easton C; Russell RJ; Scott C; Oakeshott JG Appl Environ Microbiol; 2009 Aug; 75(15):5153-6. PubMed ID: 19502439 [TBL] [Abstract][Full Text] [Related]
12. The crystal structure of the phosphotriesterase from M. tuberculosis, another member of phosphotriesterase-like lactonase family. Zhang L; Wang H; Liu X; Zhou W; Rao Z Biochem Biophys Res Commun; 2019 Mar; 510(2):224-229. PubMed ID: 30704759 [TBL] [Abstract][Full Text] [Related]
13. A 5000-fold increase in the specificity of a bacterial phosphotriesterase for malathion through combinatorial active site mutagenesis. Naqvi T; Warden AC; French N; Sugrue E; Carr PD; Jackson CJ; Scott C PLoS One; 2014; 9(4):e94177. PubMed ID: 24721933 [TBL] [Abstract][Full Text] [Related]
14. Overexpression, crystallization and preliminary X-ray crystallographic analysis of the phosphotriesterase from Mycobacterium tuberculosis. Zhang L; Chen R; Dong Z; Li X Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Jan; 69(Pt 1):57-60. PubMed ID: 23295488 [TBL] [Abstract][Full Text] [Related]
15. New monomeric cobalt(II) and zinc(II) complexes of a mixed N,S(alkylthiolate) ligand: model complexes of (His)(His)(Cys) metalloprotein active sites. Chang S; Karambelkar VV; Sommer RD; Rheingold AL; Goldberg DP Inorg Chem; 2002 Jan; 41(2):239-48. PubMed ID: 11800612 [TBL] [Abstract][Full Text] [Related]
16. Substitution of the catalytic metal and protein PEGylation enhances activity and stability of bacterial phosphotriesterase. Perezgasga L; Sánchez-Sánchez L; Aguila S; Vazquez-Duhalt R Appl Biochem Biotechnol; 2012 Mar; 166(5):1236-47. PubMed ID: 22249853 [TBL] [Abstract][Full Text] [Related]
17. Genetic Incorporation of Selenotyrosine Significantly Improves Enzymatic Activity of Agrobacterium radiobacter Phosphotriesterase. An X; Chen C; Wang T; Huang A; Zhang D; Han MJ; Wang J Chembiochem; 2021 Aug; 22(15):2535-2539. PubMed ID: 32789938 [TBL] [Abstract][Full Text] [Related]
18. Mutation of outer-shell residues modulates metal ion co-ordination strength in a metalloenzyme. Foo JL; Jackson CJ; Carr PD; Kim HK; Schenk G; Gahan LR; Ollis DL Biochem J; 2010 Jul; 429(2):313-21. PubMed ID: 20459397 [TBL] [Abstract][Full Text] [Related]
19. X-ray crystal structure of Desulfovibrio vulgaris rubrerythrin with zinc substituted into the [Fe(SCys)4] site and alternative diiron site structures. Jin S; Kurtz DM; Liu ZJ; Rose J; Wang BC Biochemistry; 2004 Mar; 43(11):3204-13. PubMed ID: 15023070 [TBL] [Abstract][Full Text] [Related]
20. Growth of Escherichia coli coexpressing phosphotriesterase and glycerophosphodiester phosphodiesterase, using paraoxon as the sole phosphorus source. McLoughlin SY; Jackson C; Liu JW; Ollis DL Appl Environ Microbiol; 2004 Jan; 70(1):404-12. PubMed ID: 14711669 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]