These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 16687286)

  • 1. Phosphorylation of mCRY2 at Ser557 in the hypothalamic suprachiasmatic nucleus of the mouse.
    Kurabayashi N; Hirota T; Harada Y; Sakai M; Fukada Y
    Chronobiol Int; 2006; 23(1-2):129-34. PubMed ID: 16687286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ser-557-phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase-3 beta.
    Harada Y; Sakai M; Kurabayashi N; Hirota T; Fukada Y
    J Biol Chem; 2005 Sep; 280(36):31714-21. PubMed ID: 15980066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DYRK1A and glycogen synthase kinase 3beta, a dual-kinase mechanism directing proteasomal degradation of CRY2 for circadian timekeeping.
    Kurabayashi N; Hirota T; Sakai M; Sanada K; Fukada Y
    Mol Cell Biol; 2010 Apr; 30(7):1757-68. PubMed ID: 20123978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serine phosphorylation of mCRY1 and mCRY2 by mitogen-activated protein kinase.
    Sanada K; Harada Y; Sakai M; Todo T; Fukada Y
    Genes Cells; 2004 Aug; 9(8):697-708. PubMed ID: 15298678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protracted cocaine withdrawal produces circadian rhythmic alterations of phosphorylated GSK-3β in reward-related brain areas in rats.
    Wei YM; Li SX; Shi HS; Ding ZB; Luo YX; Xue YX; Lu L; Yu CX
    Behav Brain Res; 2011 Mar; 218(1):228-33. PubMed ID: 21130813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic stress affects PERIOD2 expression through glycogen synthase kinase-3β phosphorylation in the central clock.
    Kinoshita C; Miyazaki K; Ishida N
    Neuroreport; 2012 Jan; 23(2):98-102. PubMed ID: 22158133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo role of phosphorylation of cryptochrome 2 in the mouse circadian clock.
    Hirano A; Kurabayashi N; Nakagawa T; Shioi G; Todo T; Hirota T; Fukada Y
    Mol Cell Biol; 2014 Dec; 34(24):4464-73. PubMed ID: 25288642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term constant light induces constitutive elevated expression of mPER2 protein in the murine SCN: a molecular basis for Aschoff's rule?
    Muñoz M; Peirson SN; Hankins MW; Foster RG
    J Biol Rhythms; 2005 Feb; 20(1):3-14. PubMed ID: 15654066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PER2 controls circadian periods through nuclear localization in the suprachiasmatic nucleus.
    Miyazaki K; Wakabayashi M; Chikahisa S; Sei H; Ishida N
    Genes Cells; 2007 Nov; 12(11):1225-34. PubMed ID: 17986006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delayed Effect of the Light Pulse on Phosphorylated ERK1/2 and GSK3β Kinases in the Ventrolateral Suprachiasmatic Nucleus of Rat.
    Červená K; Pačesová D; Spišská V; Bendová Z
    J Mol Neurosci; 2015 Jun; 56(2):371-6. PubMed ID: 25894767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of lithium on the circadian rhythms of locomotor activity and glycogen synthase kinase-3 protein expression in the mouse suprachiasmatic nuclei.
    Iwahana E; Akiyama M; Miyakawa K; Uchida A; Kasahara J; Fukunaga K; Hamada T; Shibata S
    Eur J Neurosci; 2004 Apr; 19(8):2281-7. PubMed ID: 15090054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attenuated circadian rhythms in mice lacking the prokineticin 2 gene.
    Li JD; Hu WP; Boehmer L; Cheng MY; Lee AG; Jilek A; Siegel JM; Zhou QY
    J Neurosci; 2006 Nov; 26(45):11615-23. PubMed ID: 17093083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronobiological analysis of circadian patterns in transcription of seven key clock genes in six peripheral tissues in mice.
    Liu S; Cai Y; Sothern RB; Guan Y; Chan P
    Chronobiol Int; 2007; 24(5):793-820. PubMed ID: 17994338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleocytoplasmic shuttling of clock proteins.
    Tamanini F; Yagita K; Okamura H; van der Horst GT
    Methods Enzymol; 2005; 393():418-35. PubMed ID: 15817303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melatonin plays a crucial role in the regulation of rhythmic clock gene expression in the mouse pars tuberalis.
    von Gall C; Weaver DR; Moek J; Jilg A; Stehle JH; Korf HW
    Ann N Y Acad Sci; 2005 Apr; 1040():508-11. PubMed ID: 15891103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Synchronization and genetic redundancy in circadian clocks].
    Dardente H
    Med Sci (Paris); 2008 Mar; 24(3):270-6. PubMed ID: 18334175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clock gene expression in adult primate suprachiasmatic nuclei and adrenal: is the adrenal a peripheral clock responsive to melatonin?
    Valenzuela FJ; Torres-Farfan C; Richter HG; Mendez N; Campino C; Torrealba F; Valenzuela GJ; Serón-Ferré M
    Endocrinology; 2008 Apr; 149(4):1454-61. PubMed ID: 18187542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock.
    Husse J; Leliavski A; Tsang AH; Oster H; Eichele G
    FASEB J; 2014 Nov; 28(11):4950-60. PubMed ID: 25063847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulation of mammalian cell lines for circadian studies.
    Tamanini F
    Methods Mol Biol; 2007; 362():443-53. PubMed ID: 17417033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered food-anticipatory activity rhythm in Cryptochrome-deficient mice.
    Iijima M; Yamaguchi S; van der Horst GT; Bonnefont X; Okamura H; Shibata S
    Neurosci Res; 2005 Jun; 52(2):166-73. PubMed ID: 15893577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.