BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 16687293)

  • 21. Nerve growth factor-induced circadian phase shifts and MAP kinase activation in the hamster suprachiasmatic nuclei.
    Pizzio GA; Hainich EC; Plano SA; Ralph MR; Golombek DA
    Eur J Neurosci; 2005 Aug; 22(3):665-71. PubMed ID: 16101748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcium dynamics and circadian rhythms in suprachiasmatic nucleus neurons.
    Ikeda M
    Neuroscientist; 2004 Aug; 10(4):315-24. PubMed ID: 15271259
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Entrainment and coupling of the hamster suprachiasmatic clock by daily dark pulses.
    Mendoza J; Pévet P; Challet E
    J Neurosci Res; 2009 Feb; 87(3):758-65. PubMed ID: 18831006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural regulation of the hepatic circadian rhythm.
    Shibata S
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Sep; 280(1):901-9. PubMed ID: 15382011
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The circadian pacemaker in the cultured suprachiasmatic nucleus from pup mice is highly sensitive to external perturbation.
    Nishide SY; Honma S; Honma K
    Eur J Neurosci; 2008 May; 27(10):2686-90. PubMed ID: 18513319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Brain-derived neurotrophic factor/TrkB signaling regulates daily astroglial plasticity in the suprachiasmatic nucleus: electron-microscopic evidence in mouse.
    Girardet C; Lebrun B; Cabirol-Pol MJ; Tardivel C; François-Bellan AM; Becquet D; Bosler O
    Glia; 2013 Jul; 61(7):1172-7. PubMed ID: 23640807
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular senescence impairs circadian expression of clock genes in vitro and in vivo.
    Kunieda T; Minamino T; Katsuno T; Tateno K; Nishi J; Miyauchi H; Orimo M; Okada S; Komuro I
    Circ Res; 2006 Mar; 98(4):532-9. PubMed ID: 16424366
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visualizing jet lag in the mouse suprachiasmatic nucleus and peripheral circadian timing system.
    Davidson AJ; Castanon-Cervantes O; Leise TL; Molyneux PC; Harrington ME
    Eur J Neurosci; 2009 Jan; 29(1):171-80. PubMed ID: 19032592
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Constitutive activation of the ERK-MAPK pathway in the suprachiasmatic nuclei inhibits circadian resetting.
    Hainich EC; Pizzio GA; Golombek DA
    FEBS Lett; 2006 Dec; 580(28-29):6665-8. PubMed ID: 17125769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel neuronal cell line derived from the ventrolateral region of the suprachiasmatic nucleus.
    Matsushita T; Amagai Y; Terai K; Kojima T; Obinata M; Hashimoto S
    Neuroscience; 2006 Jul; 140(3):849-56. PubMed ID: 16616428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circadian mPer1 gene expression in mesencephalic trigeminal nucleus cultures.
    Hiler DJ; Bhattacherjee A; Yamazaki S; Tei H; Geusz ME
    Brain Res; 2008 Jun; 1214():84-93. PubMed ID: 18472091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The p42/44 mitogen-activated protein kinase pathway couples photic input to circadian clock entrainment.
    Butcher GQ; Doner J; Dziema H; Collamore M; Burgoon PW; Obrietan K
    J Biol Chem; 2002 Aug; 277(33):29519-25. PubMed ID: 12042309
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Restoration of circadian rhythmicity in circadian clock-deficient mice in constant light.
    Abraham D; Dallmann R; Steinlechner S; Albrecht U; Eichele G; Oster H
    J Biol Rhythms; 2006 Jun; 21(3):169-76. PubMed ID: 16731656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition.
    Meloche S; Pouysségur J
    Oncogene; 2007 May; 26(22):3227-39. PubMed ID: 17496918
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light activates the adrenal gland: timing of gene expression and glucocorticoid release.
    Ishida A; Mutoh T; Ueyama T; Bando H; Masubuchi S; Nakahara D; Tsujimoto G; Okamura H
    Cell Metab; 2005 Nov; 2(5):297-307. PubMed ID: 16271530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts.
    Kanno T; Takahashi T; Tsujisawa T; Ariyoshi W; Nishihara T
    J Cell Biochem; 2007 Aug; 101(5):1266-77. PubMed ID: 17265428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Signaling to the circadian clock: plasticity by chromatin remodeling.
    Nakahata Y; Grimaldi B; Sahar S; Hirayama J; Sassone-Corsi P
    Curr Opin Cell Biol; 2007 Apr; 19(2):230-7. PubMed ID: 17317138
    [TBL] [Abstract][Full Text] [Related]  

  • 38. cAMP-regulated dynamics of the mammalian circadian clock.
    Wang J; Zhou T
    Biosystems; 2010 Aug; 101(2):136-43. PubMed ID: 20570634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora.
    Brunner M; Schafmeier T
    Genes Dev; 2006 May; 20(9):1061-74. PubMed ID: 16651653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Circadian entrainment aftereffects in suprachiasmatic nuclei and peripheral tissues in vitro.
    Molyneux PC; Dahlgren MK; Harrington ME
    Brain Res; 2008 Sep; 1228():127-34. PubMed ID: 18598681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.