These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Predicting human nocturnal nonvisual responses to monochromatic and polychromatic light with a melanopsin photosensitivity function. Revell VL; Barrett DC; Schlangen LJ; Skene DJ Chronobiol Int; 2010 Oct; 27(9-10):1762-77. PubMed ID: 20969522 [TBL] [Abstract][Full Text] [Related]
5. Light-induced melatonin suppression in humans with polychromatic and monochromatic light. Revell VL; Skene DJ Chronobiol Int; 2007; 24(6):1125-37. PubMed ID: 18075803 [TBL] [Abstract][Full Text] [Related]
6. Spectral sensitivity of melatonin suppression in the zebrafish pineal gland. Ziv L; Tovin A; Strasser D; Gothilf Y Exp Eye Res; 2007 Jan; 84(1):92-9. PubMed ID: 17067577 [TBL] [Abstract][Full Text] [Related]
7. The suppression of nocturnal pineal melatonin in the Syrian hamster: dose-response curves at 500 and 360 nm. Podolin PL; Rollag MD; Brainard GC Endocrinology; 1987 Jul; 121(1):266-70. PubMed ID: 3595519 [TBL] [Abstract][Full Text] [Related]
8. Suppression of pineal melatonin in Peromyscus leucopus by different monochromatic wavelengths of visible and near-ultraviolet light (UV-A). Benshoff HM; Brainard GC; Rollag MD; Lynch GR Brain Res; 1987 Sep; 420(2):397-402. PubMed ID: 3676772 [TBL] [Abstract][Full Text] [Related]
9. Comparison of visual sensitivity for suppression of pineal melatonin and circadian phase-shifting in the golden hamster. Nelson DE; Takahashi JS Brain Res; 1991 Jul; 554(1-2):272-7. PubMed ID: 1933309 [TBL] [Abstract][Full Text] [Related]
10. Retinal mechanisms determine the subadditive response to polychromatic light by the human circadian system. Figueiro MG; Bierman A; Rea MS Neurosci Lett; 2008 Jun; 438(2):242-5. PubMed ID: 18479818 [TBL] [Abstract][Full Text] [Related]
11. Short-wavelength enrichment of polychromatic light enhances human melatonin suppression potency. Brainard GC; Hanifin JP; Warfield B; Stone MK; James ME; Ayers M; Kubey A; Byrne B; Rollag M J Pineal Res; 2015 Apr; 58(3):352-61. PubMed ID: 25726691 [TBL] [Abstract][Full Text] [Related]
12. Demonstration of additivity failure in human circadian phototransduction. Figueiro MG; Bullough JD; Bierman A; Rea MS Neuro Endocrinol Lett; 2005 Oct; 26(5):493-8. PubMed ID: 16264413 [TBL] [Abstract][Full Text] [Related]
13. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. Lockley SW; Brainard GC; Czeisler CA J Clin Endocrinol Metab; 2003 Sep; 88(9):4502-5. PubMed ID: 12970330 [TBL] [Abstract][Full Text] [Related]
14. Light during darkness and cancer: relationships in circadian photoreception and tumor biology. Jasser SA; Blask DE; Brainard GC Cancer Causes Control; 2006 May; 17(4):515-23. PubMed ID: 16596305 [TBL] [Abstract][Full Text] [Related]
15. Light, dark, and melatonin: emerging evidence for the importance of melatonin in ocular physiology. Brennan R; Jan JE; Lyons CJ Eye (Lond); 2007 Jul; 21(7):901-8. PubMed ID: 17001324 [TBL] [Abstract][Full Text] [Related]
17. Circadian effectiveness of two polychromatic lights in suppressing human nocturnal melatonin. Figueiro MG; Rea MS; Bullough JD Neurosci Lett; 2006 Oct; 406(3):293-7. PubMed ID: 16930839 [TBL] [Abstract][Full Text] [Related]
18. Spectral modulation attenuates molecular, endocrine, and neurobehavioral disruption induced by nocturnal light exposure. Rahman SA; Marcu S; Shapiro CM; Brown TJ; Casper RF Am J Physiol Endocrinol Metab; 2011 Mar; 300(3):E518-27. PubMed ID: 21177289 [TBL] [Abstract][Full Text] [Related]
19. Differential light intensity and spectral sensitivities of Atlantic salmon, European sea bass and Atlantic cod pineal glands ex vivo. Vera LM; Davie A; Taylor JF; Migaud H Gen Comp Endocrinol; 2010 Jan; 165(1):25-33. PubMed ID: 19501092 [TBL] [Abstract][Full Text] [Related]