These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 1668751)
1. Calcium influx in resting conditions in a preparation of peptidergic nerve terminals isolated from the rat neurohypophysis. Toescu EC J Physiol; 1991 Feb; 433():109-25. PubMed ID: 1668751 [TBL] [Abstract][Full Text] [Related]
2. Intracellular calcium and vasopressin release of rat isolated neurohypophysial nerve endings. Stuenkel EL; Nordmann JJ J Physiol; 1993 Aug; 468():335-55. PubMed ID: 8254513 [TBL] [Abstract][Full Text] [Related]
3. Effect of sodium and calcium on basal secretory activity of rat neurohypophysial peptidergic nerve terminals. Toescu EC; Nordmann JJ J Physiol; 1991 Feb; 433():127-44. PubMed ID: 1841936 [TBL] [Abstract][Full Text] [Related]
4. Effects of charge and lipophilicity on mercurial-induced reduction of 45Ca2+ uptake in isolated nerve terminals of the rat. Hewett SJ; Atchison WD Toxicol Appl Pharmacol; 1992 Apr; 113(2):267-73. PubMed ID: 1313995 [TBL] [Abstract][Full Text] [Related]
6. Na(+)-Ca2+ exchange activity in central nerve endings. I. Ionic conditions that discriminate 45Ca2+ uptake through the exchanger from that occurring through voltage-operated Ca2+ channels. Taglialatela M; Di Renzo G; Annunziato L Mol Pharmacol; 1990 Sep; 38(3):385-92. PubMed ID: 2169581 [TBL] [Abstract][Full Text] [Related]
7. Sodium and calcium fluxes in a clonal nerve cell line. Stallcup WB J Physiol; 1979 Jan; 286():525-40. PubMed ID: 571466 [TBL] [Abstract][Full Text] [Related]
8. Kinetic properties of the sodium-calcium exchanger in rat brain synaptosomes. Fontana G; Rogowski RS; Blaustein MP J Physiol; 1995 Jun; 485 ( Pt 2)(Pt 2):349-64. PubMed ID: 7666363 [TBL] [Abstract][Full Text] [Related]
9. Regulation of intracellular calcium and calcium buffering properties of rat isolated neurohypophysial nerve endings. Stuenkel EL J Physiol; 1994 Dec; 481 ( Pt 2)(Pt 2):251-71. PubMed ID: 7738824 [TBL] [Abstract][Full Text] [Related]
10. Characterization of interactions of methylmercury with Ca2+ channels in synaptosomes and pheochromocytoma cells: radiotracer flux and binding studies. Shafer TJ; Contreras ML; Atchison WD Mol Pharmacol; 1990 Jul; 38(1):102-13. PubMed ID: 2164628 [TBL] [Abstract][Full Text] [Related]
11. Two types of high-threshold calcium currents inhibited by omega-conotoxin in nerve terminals of rat neurohypophysis. Wang X; Treistman SN; Lemos JR J Physiol; 1992 Jan; 445():181-99. PubMed ID: 1323666 [TBL] [Abstract][Full Text] [Related]
12. Secretion from rat neurohypophysial nerve terminals (neurosecretosomes) rapidly inactivates despite continued elevation of intracellular Ca2+. Fatatis A; Holtzclaw L; Payza K; Russell JT Brain Res; 1992 Mar; 574(1-2):33-41. PubMed ID: 1638405 [TBL] [Abstract][Full Text] [Related]
13. Effects of hypercapnia on membrane potential and intracellular calcium in rat carotid body type I cells. Buckler KJ; Vaughan-Jones RD J Physiol; 1994 Jul; 478 ( Pt 1)(Pt 1):157-71. PubMed ID: 7965831 [TBL] [Abstract][Full Text] [Related]
14. Gadolinium and neomycin block voltage-sensitive Ca2+ channels without interfering with the Na(+)-Ca2+ antiporter in brain nerve endings. Canzoniero LM; Taglialatela M; Di Renzo G; Annunziato L Eur J Pharmacol; 1993 Apr; 245(2):97-103. PubMed ID: 8491259 [TBL] [Abstract][Full Text] [Related]
15. Effects of membrane depolarization on intracellular calcium in single nerve terminals. Stuenkel EL Brain Res; 1990 Oct; 529(1-2):96-101. PubMed ID: 2282508 [TBL] [Abstract][Full Text] [Related]
16. Voltage-dependent calcium channels in pituitary cells in culture. I. Characterization by 45Ca2+ fluxes. Tan KN; Tashjian AH J Biol Chem; 1984 Jan; 259(1):418-26. PubMed ID: 6323409 [TBL] [Abstract][Full Text] [Related]
17. The calcium channel antagonist omega-conotoxin inhibits secretion from peptidergic nerve terminals. Dayanithi G; Martin-Moutot N; Barlier S; Colin DA; Kretz-Zaepfel M; Couraud F; Nordmann JJ Biochem Biophys Res Commun; 1988 Oct; 156(1):255-62. PubMed ID: 3178834 [TBL] [Abstract][Full Text] [Related]
18. Effects of depolarizing agents on transglutaminase activity, Ca2+ influx, and protein synthesis in superior cervical and nodose ganglia excised from rats. Ando M; Nagata Y Mol Chem Neuropathol; 1993; 19(1-2):121-35. PubMed ID: 8103333 [TBL] [Abstract][Full Text] [Related]
19. Calcium permeability changes and neurotransmitter release in cultured rat brain neurons. I. Effects of stimulation on calcium fluxes. Yarom M; Zurgil N; Zisapel N J Biol Chem; 1985 Dec; 260(30):16286-93. PubMed ID: 2866190 [TBL] [Abstract][Full Text] [Related]
20. Omega-agatoxin-TK is a useful tool to study P-type Ca2+ channel-mediated changes in internal Ca2+ and glutamate release in depolarised brain nerve terminals. Sitges M; Galindo CA Neurochem Int; 2005 Jan; 46(1):53-60. PubMed ID: 15567515 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]