These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 16687606)

  • 21. CORM-401 induces calcium signalling, NO increase and activation of pentose phosphate pathway in endothelial cells.
    Kaczara P; Proniewski B; Lovejoy C; Kus K; Motterlini R; Abramov AY; Chlopicki S
    FEBS J; 2018 Apr; 285(7):1346-1358. PubMed ID: 29464848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Age-related changes in adenosine-mediated relaxation of coronary and aortic smooth muscle.
    Hinschen AK; Rose'Meyer RB; Headrick JP
    Am J Physiol Heart Circ Physiol; 2001 May; 280(5):H2380-9. PubMed ID: 11299245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The unexplored potential of the pentose phosphate pathway in health and disease.
    Berry GT
    J Inherit Metab Dis; 2008 Dec; 31(6):661. PubMed ID: 19015949
    [No Abstract]   [Full Text] [Related]  

  • 24. Role of myocardium and endothelium in coronary vascular smooth muscle responses to hypoxia.
    Kerkhof CJ; Van Der Linden PJ; Sipkema P
    Am J Physiol Heart Circ Physiol; 2002 Apr; 282(4):H1296-303. PubMed ID: 11893564
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Canine coronary vasodepressor responses to hypoxia are abolished by 8-phenyltheophylline.
    Wei HM; Kang YH; Merrill GF
    Am J Physiol; 1989 Oct; 257(4 Pt 2):H1043-8. PubMed ID: 2801966
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanisms of relaxation of coronary artery by hypoxia.
    Lee YH; Kim JT; Kang BS
    Yonsei Med J; 1998 Jun; 39(3):252-60. PubMed ID: 9664831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The regulation of the pentose phosphate pathway: Remember Krebs.
    Ramos-Martinez JI
    Arch Biochem Biophys; 2017 Jan; 614():50-52. PubMed ID: 28041936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Smooth muscle mediates circumferential conduction of hyperpolarization and relaxation to focal endothelial cell activation in large coronary arteries.
    Selemidis S; Cocks T
    Naunyn Schmiedebergs Arch Pharmacol; 2007 Apr; 375(2):85-94. PubMed ID: 17340126
    [TBL] [Abstract][Full Text] [Related]  

  • 29. cAMP-independent dilation of coronary arterioles to adenosine : role of nitric oxide, G proteins, and K(ATP) channels.
    Hein TW; Kuo L
    Circ Res; 1999 Oct; 85(7):634-42. PubMed ID: 10506488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Abnormal flow-mediated epicardial vasomotion in human coronary arteries is improved by angiotensin-converting enzyme inhibition: a potential role of bradykinin.
    Prasad A; Husain S; Quyyumi AA
    J Am Coll Cardiol; 1999 Mar; 33(3):796-804. PubMed ID: 10080484
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The regulation of the oxidative phase of the pentose phosphate pathway: new answers to old problems.
    Barcia-Vieitez R; Ramos-Martínez JI
    IUBMB Life; 2014 Nov; 66(11):775-9. PubMed ID: 25408203
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adenosine and hypoxic dilation of rat coronary small arteries: roles of the ATP-sensitive potassium channel, endothelium, and nitric oxide.
    Lynch FM; Austin C; Heagerty AM; Izzard AS
    Am J Physiol Heart Circ Physiol; 2006 Mar; 290(3):H1145-50. PubMed ID: 16243919
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitric oxide exerts feedback inhibition on EDHF-induced coronary arteriolar dilation in vivo.
    Nishikawa Y; Stepp DW; Chilian WM
    Am J Physiol Heart Circ Physiol; 2000 Aug; 279(2):H459-65. PubMed ID: 10924042
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Requisite Role of Kv1.5 Channels in Coronary Metabolic Dilation.
    Ohanyan V; Yin L; Bardakjian R; Kolz C; Enrick M; Hakobyan T; Kmetz J; Bratz I; Luli J; Nagane M; Khan N; Hou H; Kuppusamy P; Graham J; Fu FK; Janota D; Oyewumi MO; Logan S; Lindner JR; Chilian WM
    Circ Res; 2015 Sep; 117(7):612-621. PubMed ID: 26224794
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cells overexpressing fructose-2,6-bisphosphatase showed enhanced pentose phosphate pathway flux and resistance to oxidative stress.
    Boada J; Roig T; Perez X; Gamez A; Bartrons R; Cascante M; Bermúdez J
    FEBS Lett; 2000 Sep; 480(2-3):261-4. PubMed ID: 11034341
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contribution of K
    Nishijima Y; Cao S; Chabowski DS; Korishettar A; Ge A; Zheng X; Sparapani R; Gutterman DD; Zhang DX
    Circ Res; 2017 Feb; 120(4):658-669. PubMed ID: 27872049
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A model of the pentose phosphate pathway in rat liver cells.
    Sabate L; Franco R; Canela EI; Centelles JJ; Cascante M
    Mol Cell Biochem; 1995 Jan; 142(1):9-17. PubMed ID: 7753046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elevated glucose impairs cAMP-mediated dilation by reducing Kv channel activity in rat small coronary smooth muscle cells.
    Li H; Chai Q; Gutterman DD; Liu Y
    Am J Physiol Heart Circ Physiol; 2003 Sep; 285(3):H1213-9. PubMed ID: 12763748
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of adenosine triphosphate-sensitive potassium channel inhibitors on coronary metabolic vasodilation.
    Farouque HM; Meredith IT
    Trends Cardiovasc Med; 2007 Feb; 17(2):63-8. PubMed ID: 17292049
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pharmacological properties of the tachykinin receptor subtype in the endothelial cell and vasodilation.
    Saito R; Nonaka S; Konishi H; Takano Y; Shimohigashi Y; Matsumoto H; Ohno M; Kamiya H
    Ann N Y Acad Sci; 1991; 632():457-9. PubMed ID: 1719902
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.