These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 16687606)

  • 61. Acute hypoxia induces vasodilation and increases coronary blood flow by activating inward rectifier K(+) channels.
    Park WS; Son YK; Kim N; Ko JH; Kang SH; Warda M; Earm YE; Jung ID; Park YM; Han J
    Pflugers Arch; 2007 Sep; 454(6):1023-30. PubMed ID: 17486361
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Targeting the hedgehog signaling pathway for cardiac repair and regeneration.
    Wang Y; Lu P; Zhao D; Sheng J
    Herz; 2017 Nov; 42(7):662-668. PubMed ID: 27878328
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Hypoxia Signaling in Vascular Homeostasis.
    Marsboom G; Rehman J
    Physiology (Bethesda); 2018 Sep; 33(5):328-337. PubMed ID: 30109825
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Kv7 channels critically determine coronary artery reactivity: left-right differences and down-regulation by hyperglycaemia.
    Morales-Cano D; Moreno L; Barreira B; Pandolfi R; Chamorro V; Jimenez R; Villamor E; Duarte J; Perez-Vizcaino F; Cogolludo A
    Cardiovasc Res; 2015 Apr; 106(1):98-108. PubMed ID: 25616413
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Changes of pentose phosphate pathway flux in vivo in Corynebacterium glutamicum during leucine-limited batch cultivation as determined from intracellular metabolite concentration measurements.
    Moritz B; Striegel K; de Graaf AA; Sahm H
    Metab Eng; 2002 Oct; 4(4):295-305. PubMed ID: 12646324
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [Current concepts on the mechanisms of hypoxic effects on vascular tonus].
    Kizub IV; Pavlova OO; Sahach VF; Solovĭov AI
    Fiziol Zh (1994); 2002; 48(1):112-22. PubMed ID: 11928625
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Interaction between coronary artery tone and spasm.
    Mashiba H; Hoshio A; Kotake H
    J Am Coll Cardiol; 1991 Apr; 17(5):1063-4. PubMed ID: 2007703
    [No Abstract]   [Full Text] [Related]  

  • 68. The coronary circulation in diabetes: influence of reactive oxygen species on K+ channel-mediated vasodilation.
    Liu Y; Gutterman DD
    Vascul Pharmacol; 2002 Jan; 38(1):43-9. PubMed ID: 12378822
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The H2O2-generating system modulates protein iodination and the activity of the pentose phosphate pathway in dog thyroid.
    Corvilain B; van Sande J; Laurent E; Dumont JE
    Endocrinology; 1991 Feb; 128(2):779-85. PubMed ID: 1846588
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The pentose phosphate cycle is regulated by NADPH/NADP ratio in rat liver.
    Fabregat I; Vitorica J; Satrustegui J; Machado A
    Arch Biochem Biophys; 1985 Jan; 236(1):110-8. PubMed ID: 3966788
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Differential distribution and functional impact of BK channel beta1 subunits across mesenteric, coronary, and different cerebral arteries of the rat.
    Kuntamallappanavar G; Bisen S; Bukiya AN; Dopico AM
    Pflugers Arch; 2017 Feb; 469(2):263-277. PubMed ID: 28012000
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Role of prostacyclin in normal and arteriosclerotic human coronary arteries during hypoxia.
    Siegel G; Schnalke F; Rückborn K; Müller J; Hetzer R
    Agents Actions Suppl; 1992; 37():320-32. PubMed ID: 1632307
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effects of Increased NADPH Concentration by Metabolic Engineering of the Pentose Phosphate Pathway on Antibiotic Production and Sporulation in
    Jin XM; Chang YK; Lee JH; Hong SK
    J Microbiol Biotechnol; 2017 Oct; 27(10):1867-1876. PubMed ID: 28838222
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Role of the endothelium in the development of a transitory increase in the tonus of the coronary arteries in hypo-oxygenation].
    Baziliuk OV; Bershteĭn SA; Solov'ev AI
    Fiziol Zh (1978); 1987; 33(4):16-22. PubMed ID: 3622807
    [No Abstract]   [Full Text] [Related]  

  • 75. Anaerobic 2-ketogluconate metabolism of Klebsiella pneumoniae NCTC 418 grown in chemostat culture: involvement of the pentose phosphate pathway.
    Simons JA; Snoep JL; Feitz S; Teixeira de Mattos MJ; Neijssel OM
    J Gen Microbiol; 1992 Mar; 138(3):423-8. PubMed ID: 1593257
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Short-term control of the pentose phosphate cycle by insulin could be modulated by the NADPH/NADP ratio in rat adipocytes and hepatocytes.
    Fabregat I; Revilla E; Machado A
    Biochem Biophys Res Commun; 1987 Jul; 146(2):920-5. PubMed ID: 3304289
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Local factors controlling coronary circulation.
    Wilcken DE
    Am J Cardiol; 1983 Jul; 52(2):8A-14A. PubMed ID: 6869260
    [No Abstract]   [Full Text] [Related]  

  • 78. Nonischemic myocardial hypoxia: coronary dilation without increased tissue adenosine.
    Downey HF; Crystal GJ; Bockman EL; Bashour FA
    Am J Physiol; 1982 Oct; 243(4):H512-6. PubMed ID: 7124959
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nitroglycerine-induced vasodilation in coronary and brachial arteries in patients with suspected coronary artery disease.
    Maruhashi T; Kajikawa M; Nakashima A; Iwamoto Y; Iwamoto A; Oda N; Kishimoto S; Matsui S; Higaki T; Shimonaga T; Watanabe N; Ikenaga H; Hidaka T; Kihara Y; Chayama K; Goto C; Aibara Y; Noma K; Higashi Y
    Int J Cardiol; 2016 Sep; 219():312-6. PubMed ID: 27344131
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches.
    Chen S; Zou Y; Song C; Cao K; Cai K; Wu Y; Zhang Z; Geng D; Sun W; Ouyang N; Zhang N; Li Z; Sun G; Zhang Y; Sun Y; Zhang Y
    Basic Res Cardiol; 2023 Nov; 118(1):48. PubMed ID: 37938421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.