BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 16687609)

  • 1. Cardiac protection by mitoKATP channels is dependent on Akt translocation from cytosol to mitochondria during late preconditioning.
    Ahmad N; Wang Y; Haider KH; Wang B; Pasha Z; Uzun O; Ashraf M
    Am J Physiol Heart Circ Physiol; 2006 Jun; 290(6):H2402-8. PubMed ID: 16687609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of Akt and endothelial nitric oxide synthase to diazoxide-induced late preconditioning.
    Wang Y; Ahmad N; Kudo M; Ashraf M
    Am J Physiol Heart Circ Physiol; 2004 Sep; 287(3):H1125-31. PubMed ID: 15142844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic preconditioning: a novel approach for cardiac protection.
    Wang Y; Ahmad N; Wang B; Ashraf M
    Am J Physiol Heart Circ Physiol; 2007 May; 292(5):H2300-5. PubMed ID: 17208991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial K(ATP) channel as an end effector of cardioprotection during late preconditioning: triggering role of nitric oxide.
    Wang Y; Kudo M; Xu M; Ayub A; Ashraf M
    J Mol Cell Cardiol; 2001 Nov; 33(11):2037-46. PubMed ID: 11708847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-acting phosphodiesterase-5 inhibitor, tadalafil, induces sustained cardioprotection against lethal ischemic injury.
    Ahmad N; Wang Y; Ali AK; Ashraf M
    Am J Physiol Heart Circ Physiol; 2009 Jul; 297(1):H387-91. PubMed ID: 19429825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of mitochondrial ATP-sensitive K(+) channel for cardiac protection against ischemic injury is dependent on protein kinase C activity.
    Wang Y; Hirai K; Ashraf M
    Circ Res; 1999 Oct; 85(8):731-41. PubMed ID: 10521247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial KATP opening confers protection against lethal myocardial injury and ischaemia-induced arrhythmias in the rat heart via PI3K/Akt-dependent and -independent mechanisms.
    Matejíková J; Ravingerová T; Pancza D; Carnická S; Kolár F
    Can J Physiol Pharmacol; 2009 Dec; 87(12):1055-62. PubMed ID: 20029542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacologic profile of the selective mitochondrial-K(ATP) opener BMS-191095 for treatment of acute myocardial ischemia.
    Grover GJ; Atwal KS
    Cardiovasc Drug Rev; 2002; 20(2):121-36. PubMed ID: 12177690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depolarization of mitochondria in endothelial cells promotes cerebral artery vasodilation by activation of nitric oxide synthase.
    Katakam PV; Wappler EA; Katz PS; Rutkai I; Institoris A; Domoki F; Gáspár T; Grovenburg SM; Snipes JA; Busija DW
    Arterioscler Thromb Vasc Biol; 2013 Apr; 33(4):752-9. PubMed ID: 23329133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ROS-independent preconditioning in neurons via activation of mitoK(ATP) channels by BMS-191095.
    Gáspár T; Snipes JA; Busija AR; Kis B; Domoki F; Bari F; Busija DW
    J Cereb Blood Flow Metab; 2008 Jun; 28(6):1090-103. PubMed ID: 18212794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo characterization of the mitochondrial selective K(ATP) opener (3R)-trans-4-((4-chlorophenyl)-N-(1H-imidazol-2-ylmethyl)dimethyl-2H-1-benzopyran-6-carbonitril monohydrochloride (BMS-191095): cardioprotective, hemodynamic, and electrophysiological effects.
    Grover GJ; D'Alonzo AJ; Darbenzio RB; Parham CS; Hess TA; Bathala MS
    J Pharmacol Exp Ther; 2002 Oct; 303(1):132-40. PubMed ID: 12235243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of protein kinase C in mitochondrial KATP channel-mediated protection against Ca2+ overload injury in rat myocardium.
    Wang Y; Ashraf M
    Circ Res; 1999 May; 84(10):1156-65. PubMed ID: 10347090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MCC-134, a single pharmacophore, opens surface ATP-sensitive potassium channels, blocks mitochondrial ATP-sensitive potassium channels, and suppresses preconditioning.
    Sasaki N; Murata M; Guo Y; Jo SH; Ohler A; Akao M; O'Rourke B; Xiao RP; Bolli R; Marbán E
    Circulation; 2003 Mar; 107(8):1183-8. PubMed ID: 12615799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Downregulation of protein kinase C inhibits activation of mitochondrial K(ATP) channels by diazoxide.
    Wang Y; Takashi E; Xu M; Ayub A; Ashraf M
    Circulation; 2001 Jul; 104(1):85-90. PubMed ID: 11435343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacologic characterization of BMS-191095, a mitochondrial K(ATP) opener with no peripheral vasodilator or cardiac action potential shortening activity.
    Grover GJ; D'Alonzo AJ; Garlid KD; Bajgar R; Lodge NJ; Sleph PG; Darbenzio RB; Hess TA; Smith MA; Paucek P; Atwal KS
    J Pharmacol Exp Ther; 2001 Jun; 297(3):1184-92. PubMed ID: 11356945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacological and ischemic preconditioning of the human myocardium: mitoK(ATP) channels are upstream and p38MAPK is downstream of PKC.
    Loubani M; Galiñanes M
    BMC Physiol; 2002 Jul; 2():10. PubMed ID: 12123527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the protective effects of a highly selective ATP-sensitive potassium channel opener and ischemic preconditioning in isolated human atrial muscle.
    Carr CS; Grover GJ; Pugsley WB; Yellon DM
    Cardiovasc Drugs Ther; 1997 Jul; 11(3):473-8. PubMed ID: 9310276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of mitochondrial K(ATP) channel elicits late preconditioning against myocardial infarction via protein kinase C signaling pathway.
    Takashi E; Wang Y; Ashraf M
    Circ Res; 1999 Dec 3-17; 85(12):1146-53. PubMed ID: 10590241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Receptor and non-receptor-dependent mechanisms of cardioprotection with adenosine.
    Peart J; Willems L; Headrick JP
    Am J Physiol Heart Circ Physiol; 2003 Feb; 284(2):H519-27. PubMed ID: 12388277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria.
    Busija DW; Katakam P; Rajapakse NC; Kis B; Grover G; Domoki F; Bari F
    Brain Res Bull; 2005 Jul; 66(2):85-90. PubMed ID: 15982523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.