These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 16687907)
1. [Physiological aspects of cardiopulmonary resuscitation in adults]. Pilvinis V; Vaitkaitis D; Stasiukyniene V; Pranskūnas A Medicina (Kaunas); 2006; 42(4):346-53. PubMed ID: 16687907 [TBL] [Abstract][Full Text] [Related]
2. The effects of positive end-expiratory pressure during active compression decompression cardiopulmonary resuscitation with the inspiratory threshold valve. Voelckel WG; Lurie KG; Zielinski T; McKnite S; Plaisance P; Wenzel V; Lindner KH Anesth Analg; 2001 Apr; 92(4):967-74. PubMed ID: 11273935 [TBL] [Abstract][Full Text] [Related]
3. [New mechanical methods for cardiopulmonary resuscitation (CPR). Literature study and analysis of effectiveness]. Lindner KH; Wenzel V Anaesthesist; 1997 Mar; 46(3):220-30. PubMed ID: 9163267 [TBL] [Abstract][Full Text] [Related]
4. Alternative cardiopulmonary resuscitation devices. Smith T Curr Opin Crit Care; 2002 Jun; 8(3):219-23. PubMed ID: 12386500 [TBL] [Abstract][Full Text] [Related]
5. Cardiopulmonary resuscitation: a promise as yet largely unfulfilled. Weil MH; Tang W Dis Mon; 1997 Jul; 43(7):429-501. PubMed ID: 9230868 [TBL] [Abstract][Full Text] [Related]
6. Optimizing ventilation in conjunction with phased chest and abdominal compression-decompression (Lifestick) resuscitation. Kern KB; Hilwig RW; Berg RA; Schock RB; Ewy GA Resuscitation; 2002 Jan; 52(1):91-100. PubMed ID: 11801354 [TBL] [Abstract][Full Text] [Related]
7. [Ventilation during cardiopulmonary resuscitation (CPR). A literature study and analysis of ventilation strategies]. Wenzel V; Lindner KH; Prengel AW Anaesthesist; 1997 Feb; 46(2):133-41. PubMed ID: 9133175 [TBL] [Abstract][Full Text] [Related]
8. Cardiopulmonary resuscitation: from the beginning to the present day. Ristagno G; Tang W; Weil MH Crit Care Clin; 2009 Jan; 25(1):133-51, ix. PubMed ID: 19268799 [TBL] [Abstract][Full Text] [Related]
9. Reducing ventilation frequency combined with an inspiratory impedance device improves CPR efficiency in swine model of cardiac arrest. Yannopoulos D; Sigurdsson G; McKnite S; Benditt D; Lurie KG Resuscitation; 2004 Apr; 61(1):75-82. PubMed ID: 15081185 [TBL] [Abstract][Full Text] [Related]
10. Miniaturized mechanical chest compressor improves calculated cerebral perfusion pressure without compromising intracranial pressure during cardiopulmonary resuscitation in a porcine model of cardiac arrest. Xu J; Hu X; Yang Z; Wu X; Bisera J; Sun S; Tang W Resuscitation; 2014 May; 85(5):683-8. PubMed ID: 24463224 [TBL] [Abstract][Full Text] [Related]
11. Active compression-decompression resuscitation: a novel method of cardiopulmonary resuscitation. Cohen TJ; Tucker KJ; Redberg RF; Lurie KG; Chin MC; Dutton JP; Scheinman MM; Schiller NB; Callaham ML Am Heart J; 1992 Nov; 124(5):1145-50. PubMed ID: 1442479 [TBL] [Abstract][Full Text] [Related]
12. Recent advances in mechanical methods of cardiopulmonary resuscitation. Lurie KG Acta Anaesthesiol Scand Suppl; 1997; 111():49-52. PubMed ID: 9420954 [TBL] [Abstract][Full Text] [Related]
13. A new device producing manual sternal compression with thoracic constraint for cardiopulmonary resuscitation. Niemann JT; Rosborough JP; Kassabian L; Salami B Resuscitation; 2006 May; 69(2):295-301. PubMed ID: 16457933 [TBL] [Abstract][Full Text] [Related]
14. A tourniquet assisted cardiopulmonary resuscitation augments myocardial perfusion in a porcine model of cardiac arrest. Yang Z; Tang D; Wu X; Hu X; Xu J; Qian J; Yang M; Tang W Resuscitation; 2015 Jan; 86():49-53. PubMed ID: 25447436 [TBL] [Abstract][Full Text] [Related]
15. Effects of incomplete chest wall decompression during cardiopulmonary resuscitation on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest. Yannopoulos D; McKnite S; Aufderheide TP; Sigurdsson G; Pirrallo RG; Benditt D; Lurie KG Resuscitation; 2005 Mar; 64(3):363-72. PubMed ID: 15733767 [TBL] [Abstract][Full Text] [Related]
16. 3:1 compression to ventilation ratio versus continuous chest compression with asynchronous ventilation in a porcine model of neonatal resuscitation. Schmölzer GM; O'Reilly M; Labossiere J; Lee TF; Cowan S; Nicoll J; Bigam DL; Cheung PY Resuscitation; 2014 Feb; 85(2):270-5. PubMed ID: 24161768 [TBL] [Abstract][Full Text] [Related]
17. Hemodynamic mechanisms in CPR: a theoretical rationale for resuscitative thoracotomy in non-traumatic cardiac arrest. Babbs CF Resuscitation; 1987 Mar; 15(1):37-50. PubMed ID: 3035669 [TBL] [Abstract][Full Text] [Related]
18. Effects of various degrees of compression and active decompression on haemodynamics, end-tidal CO2, and ventilation during cardiopulmonary resuscitation of pigs. Wik L; Naess PA; Ilebekk A; Nicolaysen G; Steen PA Resuscitation; 1996 Feb; 31(1):45-57. PubMed ID: 8701109 [TBL] [Abstract][Full Text] [Related]
19. Systematic review of the mechanisms driving effective blood flow during adult CPR. Georgiou M; Papathanassoglou E; Xanthos T Resuscitation; 2014 Nov; 85(11):1586-93. PubMed ID: 25238739 [TBL] [Abstract][Full Text] [Related]
20. Intrathoracic pressure regulator during continuous-chest-compression advanced cardiac resuscitation improves vital organ perfusion pressures in a porcine model of cardiac arrest. Yannopoulos D; Nadkarni VM; McKnite SH; Rao A; Kruger K; Metzger A; Benditt DG; Lurie KG Circulation; 2005 Aug; 112(6):803-11. PubMed ID: 16061732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]