These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 16687926)

  • 21. Drosophila type II neuroblast lineages keep Prospero levels low to generate large clones that contribute to the adult brain central complex.
    Bayraktar OA; Boone JQ; Drummond ML; Doe CQ
    Neural Dev; 2010 Oct; 5():26. PubMed ID: 20920301
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila.
    Spana EP; Doe CQ
    Development; 1995 Oct; 121(10):3187-95. PubMed ID: 7588053
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Specification of neuronal subtypes by different levels of Hunchback.
    Moris-Sanz M; Estacio-Gómez A; Alvarez-Rivero J; Díaz-Benjumea FJ
    Development; 2014 Nov; 141(22):4366-74. PubMed ID: 25344076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recombineering Hunchback identifies two conserved domains required to maintain neuroblast competence and specify early-born neuronal identity.
    Tran KD; Miller MR; Doe CQ
    Development; 2010 May; 137(9):1421-30. PubMed ID: 20335359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Staufen-dependent localization of prospero mRNA contributes to neuroblast daughter-cell fate.
    Broadus J; Fuerstenberg S; Doe CQ
    Nature; 1998 Feb; 391(6669):792-5. PubMed ID: 9486649
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mid-embryo patterning and precision in Drosophila segmentation: Krüppel dual regulation of hunchback.
    Holloway DM; Spirov AV
    PLoS One; 2015; 10(3):e0118450. PubMed ID: 25793381
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gene regulatory networks in Drosophila early embryonic development as a model for the study of the temporal identity of neuroblasts.
    Myasnikova E; Spirov A
    Biosystems; 2020 Nov; 197():104192. PubMed ID: 32619531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila.
    Kohwi M; Lupton JR; Lai SL; Miller MR; Doe CQ
    Cell; 2013 Jan; 152(1-2):97-108. PubMed ID: 23332748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biochemical analysis of ++Prospero protein during asymmetric cell division: cortical Prospero is highly phosphorylated relative to nuclear Prospero.
    Srinivasan S; Peng CY; Nair S; Skeath JB; Spana EP; Doe CQ
    Dev Biol; 1998 Dec; 204(2):478-87. PubMed ID: 9882484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Ets protein Pointed P1 represses Asense expression in type II neuroblasts by activating Tailless.
    Chen R; Deng X; Zhu S
    PLoS Genet; 2022 Jan; 18(1):e1009928. PubMed ID: 35100262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development.
    Bello BC; Izergina N; Caussinus E; Reichert H
    Neural Dev; 2008 Feb; 3():5. PubMed ID: 18284664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ets transcription factor Pointed promotes the generation of intermediate neural progenitors in Drosophila larval brains.
    Zhu S; Barshow S; Wildonger J; Jan LY; Jan YN
    Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20615-20. PubMed ID: 22143802
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Seven up acts as a temporal factor during two different stages of neuroblast 5-6 development.
    Benito-Sipos J; Ulvklo C; Gabilondo H; Baumgardt M; Angel A; Torroja L; Thor S
    Development; 2011 Dec; 138(24):5311-20. PubMed ID: 22071101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stem Cell-Intrinsic, Seven-up-Triggered Temporal Factor Gradients Diversify Intermediate Neural Progenitors.
    Ren Q; Yang CP; Liu Z; Sugino K; Mok K; He Y; Ito M; Nern A; Otsuna H; Lee T
    Curr Biol; 2017 May; 27(9):1303-1313. PubMed ID: 28434858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Klumpfuss, a putative Drosophila zinc finger transcription factor, acts to differentiate between the identities of two secondary precursor cells within one neuroblast lineage.
    Yang X; Bahri S; Klein T; Chia W
    Genes Dev; 1997 Jun; 11(11):1396-408. PubMed ID: 9192868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene Regulatory Mechanisms Underlying the Spatial and Temporal Regulation of Target-Dependent Gene Expression in Drosophila Neurons.
    Berndt AJ; Tang JC; Ridyard MS; Lian T; Keatings K; Allan DW
    PLoS Genet; 2015 Dec; 11(12):e1005754. PubMed ID: 26713626
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drosophila Grainyhead specifies late programmes of neural proliferation by regulating the mitotic activity and Hox-dependent apoptosis of neuroblasts.
    Cenci C; Gould AP
    Development; 2005 Sep; 132(17):3835-45. PubMed ID: 16049114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Homeodomain protein Six4 prevents the generation of supernumerary Drosophila type II neuroblasts and premature differentiation of intermediate neural progenitors.
    Chen R; Hou Y; Connell M; Zhu S
    PLoS Genet; 2021 Feb; 17(2):e1009371. PubMed ID: 33556050
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A family of snail-related zinc finger proteins regulates two distinct and parallel mechanisms that mediate Drosophila neuroblast asymmetric divisions.
    Cai Y; Chia W; Yang X
    EMBO J; 2001 Apr; 20(7):1704-14. PubMed ID: 11285234
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Turning back the clock on neural progenitors.
    Carr AR; Choksi SP; Brand AH
    Bioessays; 2004 Jul; 26(7):711-4. PubMed ID: 15221852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.