These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 16687926)

  • 41. Seven-up acts in neuroblasts to specify adult central complex neuron identity and initiate neuroblast decommissioning.
    Dillon NR; Manning L; Hirono K; Doe CQ
    Development; 2024 Feb; 151(3):. PubMed ID: 38230563
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS.
    Kambadur R; Koizumi K; Stivers C; Nagle J; Poole SJ; Odenwald WF
    Genes Dev; 1998 Jan; 12(2):246-60. PubMed ID: 9436984
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila.
    Maurange C; Cheng L; Gould AP
    Cell; 2008 May; 133(5):891-902. PubMed ID: 18510932
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A conserved nuclear receptor, Tailless, is required for efficient proliferation and prolonged maintenance of mushroom body progenitors in the Drosophila brain.
    Kurusu M; Maruyama Y; Adachi Y; Okabe M; Suzuki E; Furukubo-Tokunaga K
    Dev Biol; 2009 Feb; 326(1):224-36. PubMed ID: 19084514
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mitotic G2-arrest is required for neural cell fate determination in Drosophila.
    Nègre N; Ghysen A; Martinez AM
    Mech Dev; 2003 Feb; 120(2):253-65. PubMed ID: 12559497
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Changes in Notch signaling coordinates maintenance and differentiation of the Drosophila larval optic lobe neuroepithelia.
    Weng M; Haenfler JM; Lee CY
    Dev Neurobiol; 2012 Nov; 72(11):1376-90. PubMed ID: 22038743
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Extrinsic cues, intrinsic cues and microfilaments regulate asymmetric protein localization in Drosophila neuroblasts.
    Broadus J; Doe CQ
    Curr Biol; 1997 Nov; 7(11):827-35. PubMed ID: 9382803
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The differentiation of the serotonergic neurons in the Drosophila ventral nerve cord depends on the combined function of the zinc finger proteins Eagle and Huckebein.
    Dittrich R; Bossing T; Gould AP; Technau GM; Urban J
    Development; 1997 Jul; 124(13):2515-25. PubMed ID: 9216994
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sibling cell fate in the Drosophila adult external sense organ lineage is specified by prospero function, which is regulated by Numb and Notch.
    Reddy GV; Rodrigues V
    Development; 1999 May; 126(10):2083-92. PubMed ID: 10207134
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hierarchical deployment of factors regulating temporal fate in a diverse neuronal lineage of the Drosophila central brain.
    Kao CF; Yu HH; He Y; Kao JC; Lee T
    Neuron; 2012 Feb; 73(4):677-84. PubMed ID: 22365543
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Drosophila homologue of CTIP1 (Bcl11a) and CTIP2 (Bcl11b) regulates neural stem cell temporal patterning.
    Fox PM; Tang JLY; Brand AH
    Development; 2022 Sep; 149(17):. PubMed ID: 36069896
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Patterns of cell division and expression of asymmetric cell fate determinants in postembryonic neuroblast lineages of Drosophila.
    Ceron J; González C; Tejedor FJ
    Dev Biol; 2001 Feb; 230(2):125-38. PubMed ID: 11161567
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells.
    Betschinger J; Mechtler K; Knoblich JA
    Cell; 2006 Mar; 124(6):1241-53. PubMed ID: 16564014
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Combinatorial expression of Prospero, Seven-up, and Elav identifies progenitor cell types during sense-organ differentiation in the Drosophila antenna.
    Sen A; Reddy GV; Rodrigues V
    Dev Biol; 2003 Feb; 254(1):79-92. PubMed ID: 12606283
    [TBL] [Abstract][Full Text] [Related]  

  • 55. From temporal patterning to neuronal connectivity in Drosophila type I neuroblast lineages.
    Pollington HQ; Seroka AQ; Doe CQ
    Semin Cell Dev Biol; 2023 Jun; 142():4-12. PubMed ID: 35659165
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A repressor-decay timer for robust temporal patterning in embryonic
    Averbukh I; Lai SL; Doe CQ; Barkai N
    Elife; 2018 Dec; 7():. PubMed ID: 30526852
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A critical role for cyclin E in cell fate determination in the central nervous system of Drosophila melanogaster.
    Berger C; Pallavi SK; Prasad M; Shashidhara LS; Technau GM
    Nat Cell Biol; 2005 Jan; 7(1):56-62. PubMed ID: 15580266
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal.
    Lee CY; Wilkinson BD; Siegrist SE; Wharton RP; Doe CQ
    Dev Cell; 2006 Apr; 10(4):441-9. PubMed ID: 16549393
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Time to move on: Modeling transcription dynamics during an embryonic transition away from maternal control.
    Liu J; Xiao Y; Zhang T; Ma J
    Fly (Austin); 2016 Jul; 10(3):101-7. PubMed ID: 27172244
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Imp and Syp mediated temporal patterning of neural stem cells in the developing Drosophila CNS.
    Islam IM; Erclik T
    Genetics; 2022 Aug; 222(1):. PubMed ID: 35881070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.