These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 1668798)

  • 1. A study on the surface strain distribution on the hydroxyapatite-implanted canine tibia: a preliminary report.
    Ito K; Ooi Y; Yano H; Takagi S
    Biomed Mater Eng; 1991; 1(3):167-71. PubMed ID: 1668798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical behavior of hydroxyapatite as bone substitute material in a loaded implant model. On the surface strain measurement and the maximum compression strength determination of material crash.
    Noro T; Itoh K
    Biomed Mater Eng; 1999; 9(5-6):319-24. PubMed ID: 10822487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction of bone to HA, carbonate-HA, hydroxyapatite + calcium orthophosphate and to hydroxyapatite + calcium ortho- and pyrophosphate.
    Nordström EG; Niemi L; Miettinen J
    Biomed Mater Eng; 1992; 2(3):115-21. PubMed ID: 1333868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyapatite-coated strain gauges for long-term in vivo bone strain measurements.
    Maliniak MM; Szivek JA; DeYoung DW; Emmanual J
    J Appl Biomater; 1993; 4(2):143-52. PubMed ID: 10171661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scintigraphic studies to evaluate stability of ceramics (hydroxyapatite) in bone replacement.
    Patka P; Den Hollander W; Den Otter G; Heidendal AK; De Groot K
    J Nucl Med; 1985 Mar; 26(3):263-71. PubMed ID: 3156222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical evaluation of the rabbit tibia after implantation of porous hydroxyapatite/collagen in a rabbit model.
    Masaoka T; Yamada T; Yuasa M; Yoshii T; Okawa A; Morita S; Kozaka Y; Hirano M; Sotome S
    J Orthop Sci; 2016 Mar; 21(2):230-6. PubMed ID: 26778623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tensile strength of the interface between hydroxyapatite and bone.
    Hong L; Xu HC; de Groot K
    J Biomed Mater Res; 1992 Jan; 26(1):7-18. PubMed ID: 1315777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone remodeling around implanted ceramics.
    Chang YS; Oka M; Nakamura T; Gu HO
    J Biomed Mater Res; 1996 Jan; 30(1):117-24. PubMed ID: 8788113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bonding behavior of three types of hydroxyapatite with different sintering temperatures implanted in bone.
    Kitsugi T; Yamamuro T; Takeuchi H; Ono M
    Clin Orthop Relat Res; 1988 Sep; (234):280-90. PubMed ID: 3409586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressive strength of implanted porous replamineform hydroxyapatite.
    Piecuch JF; Goldberg AJ; Shastry CV; Chrzanowski RB
    J Biomed Mater Res; 1984 Jan; 18(1):39-45. PubMed ID: 6699031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Histological investigation on hydroxyapatite ceramics as materials of artificial bone grafts in the cervical spine].
    Akino M
    Hokkaido Igaku Zasshi; 1991 Jul; 66(4):468-81. PubMed ID: 1916625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress.
    Le Huec JC; Schaeverbeke T; Clement D; Faber J; Le Rebeller A
    Biomaterials; 1995 Jan; 16(2):113-8. PubMed ID: 7734643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraskeletal implantation of a porous hydroxyapatite ceramic.
    Piecuch JF
    J Dent Res; 1982 Dec; 61(12):1458-60. PubMed ID: 6294161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bonding of bone to apatite-coated implants.
    Geesink RG; de Groot K; Klein CP
    J Bone Joint Surg Br; 1988 Jan; 70(1):17-22. PubMed ID: 2828374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compressive and bone-bonding strength of hydroxyapatite thermal decomposition product implanted in the femur of rabbit as a bioactive ceramic bone cement.
    Takahashi A; Koshino T
    Biomaterials; 1995 Aug; 16(12):937-43. PubMed ID: 8562783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone ingrowth and mechanical properties of coralline hydroxyapatite 1 yr after implantation.
    Martin RB; Chapman MW; Sharkey NA; Zissimos SL; Bay B; Shors EC
    Biomaterials; 1993 Apr; 14(5):341-8. PubMed ID: 8389612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary experience with a novel model assessing in vivo mechanical strength of bone grafts and substitute materials.
    Hamson KR; Toth JM; Stiehl JB; Lynch KL
    Calcif Tissue Int; 1995 Jul; 57(1):64-8. PubMed ID: 7671168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressive strength measurement and microstructure studies of hydroxyapatite cones.
    Kangvonkit P; Lemons JE; Matukas VJ
    J Prosthet Dent; 1985 Nov; 54(5):691-6. PubMed ID: 2997442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced bone bonding of hydroxyapatite-coated titanium implants by electrical polarization.
    Kobayashi T; Itoh S; Nakamura S; Nakamura M; Shinomiya K; Yamashita K
    J Biomed Mater Res A; 2007 Jul; 82(1):145-51. PubMed ID: 17269143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary development of a hydroxyapatite-backed strain gauge.
    Szivek JA; Gealer RG; Magee FP; Emmanual J
    J Appl Biomater; 1990; 1(3):241-8. PubMed ID: 10171099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.